
Productive High Performance Parallel Programming

with Auto-tuned Domain-Specific Embedded

Languages

Shoaib Ashraf Kamil

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-1

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-1.html

January 2, 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
02 JAN 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Productive High Performance Parallel Programming with Auto-tuned
Domain-Specific Embedded Languages

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
As the complexity of machines and architectures has increased, performance tuning has become more
challenging, leading to the failure of general compilers to generate the best possible optimized code. Expert
performance programmers can often hand-write code that outperforms compileroptimized low-level code
by an order of magnitude. At the same time, the complexity of programs has also increased, with modern
programs built on a variety of abstraction layers to manage complexity, yet these layers hinder efforts at
optimization. In fact, it is common to lose one or two additional orders of magnitude in performance when
going from a low-level language such as Fortran or C to a high-level language like Python, Ruby, or
Matlab. General purpose compilers are limited by the inability of program analysis to determine
programmer intent, as well as the lack of detailed performance models that always determine the best
executable code for a given computation and architecture. The latter problem can be mitigated through
auto-tuning, which generates many code variants for a particular problem and empirically determines
which performs best on a given architecture. This thesis addresses the problem of how to write programs
at a high level while obtaining the performance of code written by performance experts at the low level. To
do so, we build domainspecific embedded languages that generate low-level parallel code from a high-level
language, and then use auto-tuning to determine the best performing low-level code. Such DSELs avoid
analysis by restricting the domain while ensuring programmers specify high-level intent, and by
performing empirical auto-tuning instead of modeling machine parameters. As a result, programmers
write in high-level languages with portions of their code using DSELs, yet obtain performance equivalent
to the best hand-optimized low-level code, across many architectures. We present a methodology for
building such auto-tuned DSELs, as well as a software infrastructure and example DSELs using the
infrastructure, including a DSEL for structured grid computations and two DSELs for graph algorithms.
The structured grid DSEL obtains over 80% of peak performance for a variety of benchmark kernels
across different architectures, while the graph algorithm DSELs mitigate all performance loss due to using
a high-level language. Overall, the methodology, infrastructure, and example DSELs point to a promising
new direction for obtaining high performance while programming in a high-level language.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

183

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Productive High Performance Parallel Programming with Auto-tuned Domain-Specific Embedded
Languages

By

Shoaib Ashraf Kamil

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Armando Fox, Co-Chair
Professor Katherine Yelick, Co-Chair

Professor James Demmel
Professor Berend Smit

Fall 2012

Productive High Performance Parallel Programming with Auto-tuned Domain-Specific
Embedded Languages

Copyright c© 2012 Shoaib Kamil.

Abstract

Productive High Performance Parallel Programming with Auto-tuned Domain-Specific Embedded
Languages

by

Shoaib Ashraf Kamil

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Armando Fox, Co-Chair
Professor Katherine Yelick, Co-Chair

As the complexity of machines and architectures has increased, performance tuning has become
more challenging, leading to the failure of general compilers to generate the best possible optimized
code. Expert performance programmers can often hand-write code that outperforms compiler-
optimized low-level code by an order of magnitude. At the same time, the complexity of programs
has also increased, with modern programs built on a variety of abstraction layers to manage
complexity, yet these layers hinder efforts at optimization. In fact, it is common to lose one or
two additional orders of magnitude in performance when going from a low-level language such as
Fortran or C to a high-level language like Python, Ruby, or Matlab.

General purpose compilers are limited by the inability of program analysis to determine pro-
grammer intent, as well as the lack of detailed performance models that always determine the best
executable code for a given computation and architecture. The latter problem can be mitigated
through auto-tuning, which generates many code variants for a particular problem and empirically
determines which performs best on a given architecture.

This thesis addresses the problem of how to write programs at a high level while obtaining the
performance of code written by performance experts at the low level. To do so, we build domain-
specific embedded languages that generate low-level parallel code from a high-level language, and
then use auto-tuning to determine the best performing low-level code. Such DSELs avoid analysis
by restricting the domain while ensuring programmers specify high-level intent, and by performing
empirical auto-tuning instead of modeling machine parameters. As a result, programmers write in
high-level languages with portions of their code using DSELs, yet obtain performance equivalent to
the best hand-optimized low-level code, across many architectures.

We present a methodology for building such auto-tuned DSELs, as well as a software in-
frastructure and example DSELs using the infrastructure, including a DSEL for structured grid
computations and two DSELs for graph algorithms. The structured grid DSEL obtains over 80% of
peak performance for a variety of benchmark kernels across different architectures, while the graph
algorithm DSELs mitigate all performance loss due to using a high-level language. Overall, the
methodology, infrastructure, and example DSELs point to a promising new direction for obtaining
high performance while programming in a high-level language.

1

For all who made this possible,

and for June and Hass.

i

Contents

List of Figures vii

List of Tables x

List of Symbols xi

Acknowledgements xiii

1 Introduction 1
1.1 Thesis Contributions . 2
1.2 Thesis Outline . 3

2 Motivation and Background 6
2.1 Trends in Computing Hardware . 6
2.2 Trends in Software . 7
2.3 The Productivity-Performance Gap . 8
2.4 Auto-tuning and Auto-tuning Compilers . 9
2.5 Summary . 10

3 Related Work 11
3.1 Optimized Low-level Libraries and Auto-tuning 11
3.2 Accelerating Python . 12
3.3 Domain-Specific Embedded Languages . 12
3.4 Just-in-Time Compilation & Specialization . 13
3.5 Accelerating Structured Grid Computations . 14
3.6 Accelerating Graph Algorithms . 14
3.7 Summary . 15

4 SEJITS: A Methodology for High Performance Domain-Specific Embedded Languages 16
4.1 Overview of SEJITS . 16
4.2 DSELs and APIs in Productivity Languages . 18
4.3 Code Generation . 21
4.4 Auto-tuning . 22
4.5 Best Practices for DSELs in SEJITS . 22
4.6 Language Requirements to Enable SEJITS . 23
4.7 Summary . 24

ii

5 Asp is SEJITS for Python 25
5.1 Overview of Asp . 25
5.2 Walkthrough: Building a DSEL Compiler Using Asp 26

5.2.1 Defining the Semantic Model . 26
5.2.2 Transforming Python to Semantic Model Instances 29
5.2.3 Generating Backend Code . 30

5.3 Expressing Semantic Models . 31
5.4 Code Generation . 32

5.4.1 Dealing with Types . 33
5.5 Just-In-Time Compilation of Asp Modules . 34
5.6 Debugging Support . 34
5.7 Auto-tuning Support . 35
5.8 Summary . 36

6 Experimental Setup 37
6.1 Hardware Platforms . 37
6.2 Software Environment . 38

6.2.1 Compilers & Runtimes . 38
6.2.2 Parallel Programming Models . 39

6.3 Performance Measurement Methodology . 39
6.3.1 Timing Methodology . 39
6.3.2 Roofline Model . 39

6.4 Summary . 40

7 Overview of Case Studies 42

8 Structured Grid Computations 44
8.1 Characteristics of Structured Grid Computations 45

8.1.1 Applications . 45
8.1.2 Dimensionality . 45
8.1.3 Connectivity . 45
8.1.4 Topology . 47

8.2 Computational Characteristics . 48
8.2.1 Data Structures . 48
8.2.2 Interior Computation & Boundary Conditions 49
8.2.3 Memory Traffic . 50

8.3 Optimizations . 50
8.3.1 Algorithmic Optimizations . 51
8.3.2 Cache and TLB Blocking . 52
8.3.3 Vectorization . 53
8.3.4 Locality Across Grid Sweeps . 54
8.3.5 Communication Avoiding Algorithms . 55
8.3.6 Parallelization . 55
8.3.7 Summary of Optimizations . 55

8.4 Modeling Performance of Structured Grid Algorithms 56

iii

8.4.1 Serial Performance Models . 56
8.4.2 Roofline Model for Structured Grid . 57

8.5 Summary . 59

9 An Auto-tuner for Parallel Multicore Structured Grid Computations 61
9.1 Structured Grids Kernels & Architectures . 61

9.1.1 Benchmark Kernels . 64
9.1.2 Experimental Platforms . 65

9.2 Auto-tuning Framework . 65
9.2.1 Front-End Parsing . 65
9.2.2 Structured Grid Kernel Breadth . 67

9.3 Optimization & Code Generation . 67
9.3.1 Serial Optimizations . 68
9.3.2 Multicore-specific Optimizations and Code Generation 69
9.3.3 CUDA-specific Optimizations and Code Generation 70

9.4 Auto-Tuning Strategy Engine . 70
9.5 Performance Evaluation . 72

9.5.1 Auto-Parallelization Performance . 72
9.5.2 Performance Expectations . 72
9.5.3 Performance Portability . 76
9.5.4 Programmer Productivity Benefits . 77
9.5.5 Architectural Comparison . 77

9.6 Limitations . 77
9.7 Summary . 78

10 Sepya: An Embedded Domain-Specific Auto-tuning Compiler for Structured Grids 79
10.1 Analysis-Avoiding DSEL for Structured Grids . 80

10.1.1 Building Blocks of Structured Grid Calculations 80
10.1.2 Language and Semantics . 81
10.1.3 Avoiding Analysis . 83
10.1.4 Language in Python Constructs . 83

10.2 Structure of the Sepya Compiler . 85
10.3 Implemented Code Generation Algorithms &

Optimizations . 86
10.3.1 Auto-tuning . 87
10.3.2 Data Structure . 87

10.4 Evaluation . 88
10.4.1 Test kernels & Other DSL systems . 88
10.4.2 Breakdown of Execution Time . 90
10.4.3 Single Iteration Performance . 91
10.4.4 Multiple Iteration Performance . 98
10.4.5 Grid Size Scaling . 102
10.4.6 Expressibility . 103
10.4.7 Programmer Productivity . 103
10.4.8 Improving Auto-tuning Search . 103

iv

10.5 Future Work . 104
10.5.1 Language Extensions . 104
10.5.2 Opportunities for Further Optimization 111

10.6 Summary . 111

11 Graph Algorithms 113
11.1 Applications of Graph Algorithms . 113
11.2 Common Programming Models . 114

11.2.1 Visitor Programming Pattern . 114
11.2.2 Bulk-Synchronous Programming Model for Graph Algorithms 115
11.2.3 Matrix Representation & the Linear Algebra Programming Model 115

11.3 KDT: The Knowledge Discovery Toolbox . 117
11.4 Performance Modeling Issues for Graph Algorithms Using Linear Algebra 118
11.5 Summary . 118

12 Domain Specific Embedded Languages For High Performance Graph Algorithms in
the Knowledge Discovery Toolbox 119
12.1 A Domain-Specific Embedded Language for Filtering Semantic Graphs 119

12.1.1 Filters in the Knowledge Discovery Toolbox 120
12.1.2 DSEL for Filters . 121
12.1.3 Experimental Results . 124

12.2 A Domain-Specific Embedded Language for Defining
Semirings in Python . 131
12.2.1 Semirings in KDT . 131
12.2.2 Domain-Specific Embedded Language for Semiring Operations 131
12.2.3 Implementation of the DSEL . 132
12.2.4 Experimental Results . 133

12.3 Future Work . 136
12.4 Summary . 139

13 Other Case Studies: Implemented Domain-Specific Embedded Languages and Auto-
tuned Libraries Using the Asp Framework 140
13.1 Auto-tuned Matrix Powers for Python . 140

13.1.1 Implementation Strategy . 141
13.1.2 Performance Results . 142

13.2 Gaussian Mixture Modeling for CPUs and GPUs 143
13.2.1 Implementation Strategy . 143
13.2.2 Performance Results . 144

13.3 A DSEL for the Bag of Little Bootstraps Algorithm 144
13.3.1 Implementation . 146
13.3.2 Performance Results . 146

13.4 Summary . 147

v

14 Insights, Future Directions, and Conclusions 148
14.1 Insights from Case Studies . 148
14.2 Future Directions: Building an Ecosystem of DSELs 149
14.3 Future Directions: Composing DSELs . 150
14.4 Future Directions for Asp . 151

14.4.1 Data Structure Definitions . 151
14.4.2 Improvements in Code Generation . 151
14.4.3 Compilation As A Service . 152
14.4.4 Speeding Up Auto-tuning . 152

14.5 Conclusion . 153

Bibliography 155

vi

List of Figures

2.1 Historical processor trends. 7

4.1 Overview of the SEJITS methodology . 17
4.2 Separation of concerns enabled by SEJITS. 19
4.3 Target region for SEJITS. 20

5.1 Stages in Asp transformation of user-supplied code. 27
5.2 Examples of end-user code using ArithmeticMap DSEL 28
5.3 Semantic Model for ArithmeticMap DSEL . 28
5.4 Conversion code from Python AST to ArithmeticMap Semantic Model 29
5.5 Backend code generator for ArithmeticMap DSEL 30
5.6 Generated C++ code from DoublePlusOne using the ArithmeticMap DSEL. 31
5.7 Top-level code for the ArithmeticMap DSEL. 32

6.1 Machine-specific rooflines . 41

8.1 Rectahedral grid structures of different dimensionality. 46
8.2 Connectivity for 2D grids. 46
8.3 Cell-centered, node-centered, and edge-centered values. 47
8.4 Example topologies for structured grids. 47
8.5 Simple 2D structured grid kernel in C++ . 48
8.6 Logical and memory view of grids. 49
8.7 Jacobi and Gauss-Seidel on a 2D grid. 51
8.8 Restriction and prolongation in multigrid. 51
8.9 2D blocking of a 3D structured grid problem. 52
8.10 Serial cache-oblivious algorithm. 54
8.11 Time skewing algorithm. 54
8.12 Stanza Triad performance and model for three architectures. 57
8.13 Performance model for Laplacian structured grid problem. 58
8.14 When cache blocking is effective in structured grids. 59
8.15 Example Roofline model for structured grid calculations. 60

9.1 Visualization of structured grid kernels . 63
9.2 Structured grid auto-tuning framework flow. 66
9.3 Example of AST transformation . 68
9.4 Four level problem decomposition. 69
9.5 Laplacian performance for structured grid auto-tuner. 73

vii

9.6 Divergence performance for structured grid auto-tuner. 74
9.7 Gradient performance for structured grid auto-tuner. 75
9.8 Peak performance after auto-tuning and parallelization. 76

10.1 Semantic Model for the structured grid language. 82
10.2 Correspondence between Python and Semantic Model. 84
10.3 Full example of defining a simple 1D kernel and calling it in Python, using Sepya. 85
10.4 Parallelization/optimization strategy for the structured grid DSEL compiler 86
10.5 Example application of a bilateral filter. 89
10.6 Breakdown of overheads for the structured grid DSEL. 90
10.7 Performance for selected kernels versus pure Python on Postbop. 91
10.8 Performance for single-iteration kernels on Postbop. 92
10.9 Performance for single-iteration kernels on Boxboro. 93
10.10Performance for single-iteration kernels on Hopper. 94
10.11Performance as fraction of Roofline peak for single-iteration kernels on Postbop. . 95
10.12Performance as fraction of Roofline peak for single-iteration kernels on Boxboro. . 96
10.13Performance as fraction of Roofline peak for single-iteration kernels on Hopper. . 97
10.14Multiple iteration performance on Postbop. 99
10.15Multiple iteration performance on Boxboro. 100
10.16Multiple iteration performance on Boxboro. 101
10.17Performance as grid size is varied on Postbop. 102
10.18Hill climbing experiment on Postbop. 105
10.19Hill climbing experiment on Postbop (continued). 106
10.20Hill climbing experiment on Postbop (continued). 107
10.21Hill climbing experiment on Boxboro. 108
10.22Hill climbing experiment on Boxboro (continued). 109
10.23Hill climbing experiment on Boxboro (continued). 110
10.24Demonstration of using extensions to Sepya to express multigrid prolongation and

restriction. 111

11.1 Example of a directed and an undirected graph. 113
11.2 Visitor function for BFS . 115
11.3 Vertex function for the BSP model . 115
11.4 Breadth First Search using linear algebra. 116

12.1 Example of an edge filter in KDT. 120
12.2 Calling process for filters. 121
12.3 Semantic Model for KDT filters using SEJITS. 123
12.4 Example of an edge filter that the translation system can convert from Python into

fast C++ code. 124
12.5 C++ data structure for Twitter graph edges. 125
12.6 BFS performance as permeability is changed. 127
12.7 Filtered BFS performance for real Twitter datasets. 128
12.8 BFS strong scaling on Boxboro as filter permeability varies. 129
12.9 BFS strong scaling on Hopper as filter permeability varies. 130

viii

12.10Semantic Model for semirings. 132
12.11Example of using our DSEL to create a semiring for Breadth-First Search. 133
12.12Performance of SpMV using three different semiring implementations 135
12.13Strong scaling of BFS using three different semirings implementations. 137
12.14Connected components strong scaling performance. 138

13.1 Performance of the matrix powers tuner. 142
13.2 Raw GMM training performance. 145

14.1 Two kinds of DSEL composition. 150

ix

List of Tables

5.1 Asp language support and supported compilers. 34

6.1 Machines used for experiments . 38
6.2 Software versions used in this study. 38

7.1 Case studies overview. 43

8.1 Structured grid optimizations summary. 56

9.1 Structured grid kernel characteristics. 62
9.2 Architectural summary of evaluated platforms. 64
9.3 Attempted optimizations and parameter spaces. 71

10.1 Summary of restrictions for the Sepya DSEL and their benefits. 81
10.2 Summary of optimizations implemented in Sepya 86
10.3 Test structured grid kernels in this study. 88
10.4 Summary of structured grid systems compared in this chapter. 89
10.5 Read and write streams for memory bandwidth bound structured grid kernels. . . . 98

12.1 Overheads of using the filtering DSEL. 124
12.2 Lines of Code for KDT and Filter DSEL. 124
12.3 R-MAT parameters used in this study . 125
12.4 Sizes of different Twitter graphs. 125
12.5 Language breakdown for BFS in KDT. 134
12.6 Lines of Code for Semiring Operation DSEL. 134
12.7 Language breakdown for connected components in KDT. 136

13.1 Summary of optimizations for matrix powers. 141

x

List of Symbols

ABI Application Binary Interface
AMR Adaptive Mesh Refinement
ANSI American National Standards Institute
API Application Programming Interface
Asp Asp is SEJITS for Python
AST Abstract Syntax Tree
ATLAS Automatically Tuned Linear Algebra Software
BFS Breadth-First Search
BLAS Basic Linear Algebra Subprograms
BLB Bag of Little Bootstraps
BSP Bulk-Synchronous Parallel
BW Bandwidth
CA Communication Avoiding
CA-CG Communication-Avoiding Conjugate Gradient
CG Conjugate Gradient
CLI Command Line Interface
CombBLAS Combinatorial Basic Linear Algebra Subroutines
CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
CUDA Programming platform for Nvidia GPUs
DFS Depth-First Search
DMA Direct Memory Access
DP Double Precision
DRAM Dynamic Random Access Memory
DSEL Domain-Specific Embedded Language
DSL Domain-Specific Language
ECL Embedded Common Lisp
EM Expectation-Maximization
FFI Foreign Function Interface
FFT Fast Fourier Transform
FFTW Fastest Fourier Transform in the West
GB Gigabyte
GCC Gnu Compiler Collection
GEMM General Matrix Multiply
GIL Global Interpreter Lock

xi

GPU Graphics Processing Unit
HPC High Performance Computing
HTTP HyperText Transfer Protocol
ISA Instruction Set Architecture
ISO International Organization for Standardization
JIT Just-In-Time Compilation
JVM Java Virtual Machine
KB Kilobyte
KDT Knowledge Discovery Toolbox
LAPACK Linear Algebra Package
LLVM Low-Level Virtual Machine
LOC Lines of Code
MB Megabyte
MKL Intel Math Kernel Library
MPI Message Passing Interface
MRI Magnetic Resonance Imaging
MSVC Microsoft Visual C++ Compiler
MTEPS Millions of Traversed Edges Per Second
NUMA Non-Uniform Memory Access
ODE Ordinary Differential Equation
OOP Object-Oriented Programming
ORM Object-Relational Mapping
OSKI Optimized Sparse Kernel Interface
PDE Partial Differential Equation
SAID Semiring Additive Identity
ScaLAPACK Scalable Linear Algebra Package
SDK Software Development Kit
SEJITS Selective Embedded Just-In-Time Specialization
SIMD Single Instruction Multiple Data
SP Single Precision
SPMD Single Program Multiple Data
SpMV Sparse Matrix-Vector Multiply
SQL Structured Query Language
SSE Streaming SIMD Extensions
SVM Support Vector Machines
TDP Thermal Design Power
TLB Translation Lookaside Buffer
UMA Uniform Memory Access
UPC Universal Parallel C
VM Virtual Machine

xii

Acknowledgments

This thesis would not be possible without the guidance and support from my co-advisors,
Professors Katherine Yelick and Armando Fox. Their rigorous questioning and enthusiasm for the
work pushed me to solidify vague ideas into solid research, and their patience and ability to work
with students inspires me. I would like to thank Professors James Demmel and Berend Smit for
their valuable suggestions throughout the proposal, research, and writing process as well.

I must thank Professor James Demmel and Professor Yelick for encouraging me to pursue a
career in computer science research. Since 2000, when I was a teaching assistant for Professor
Demmel, I have almost continuously worked with them within the Berkeley Benchmarking and
Optimization Group (BeBOP), at Lawrence Berkeley National Labs, and as a graduate student.

Thank you to Professors Armando Fox and David Patterson for teaching the original graduate
seminar which spawned the idea and work embodied in this thesis, and their support for the ideas
and push to make them the focus of my research.

Thank you to the BeBOP group in its various incarnations in the past 12 years, and especially
Professor Rich Vuduc who turned my first attempts at research into publishable work. Extra thank
yous to members of the group with whom I had insightful discussions and collaborations over the
years: Rajesh Nishtala, Kaushik Datta, Ankit Jain, Marghoob Mohiyuddin, Mark Hoemmen, Oded
Schwartz, and Benjamin Lipshitz.

I am indebted to Leonid Oliker and John Shalf for taking me under their wings during my tenure
at Lawrence Berkeley National Laboratory, and teaching me how to conduct important research. I
look forward to continuing our fruitful collaborations.

Without long discussions and input from Sam Williams, this thesis would not have been possible.
Sam’s efforts to quantify and explain every aspect of performance inspire much of the work in this
thesis. Bryan Catanzaro’s always helpful and critical input also heavily influenced me; it is almost
unbelievable how we came to similar ideas and conclusions from very different starting points. Leo
Meyerovich also helped solidify some of the ideas here in discussions during Par Lab retreats.

I would also like to thank the incomparable Par Lab Technical Support team of Jeff Anderson-
Lee, Kostadin Ilov, and Jon Kuroda, who were always extremely helpful in responding to any
esoteric requests I had about the many Par Lab machines and making sure the zoo of different
architectures and form factors was running.

I am indebted to many of the Par Lab faculty who always made time to discuss research issues
despite their already busy schedules, and in particular: Professors David Patterson, Ras Bodik,
Koushik Sen, Krste Asanović, and Kurt Keutzer.

Thanks are due to the employees of Par Lab sponsors, especially from Intel and Microsoft, who
were instrumental in the research presented in this thesis: Juan Vargas, Tim Mattson, Henry Gabb,
and Adrian Chien.

The incredible administrative assistants for Par Lab and for Prof. Yelick at LBL deserve much
thanks for always helping whenever I needed them: Roxana Infante, Tamille Johnson, Roxanne
Clark, and Leah Temple.

Some of this work would be impossible without collaborating with the Knowledge Discovery
Toolbox team: Prof. John Gilbert, Aydın Buluç, and Adam Lugowski. I must also thank Henry
Cook and Ekaterina Gonina for their contributions and for being the first users of Asp.

xiii

Asp has benefitted from the work of an entire team of people, including Derrick Coetzee,
Michael Driscoll, Jeffrey Morlan, and Richard Xia, along with a large number of undergraduate
students.

Lastly but most importantly, I must thank my two families: first, the one I was born into,
especially my parents, Mohammad and Shehnaz, who have accepted and become proud of my
research career, and my siblings and their significant others, who kept me sane (or drove me insane,
depending on the time). I must also thank my family of friends, especially those who were there
beginning to end: Beto, Meg, Charlotte, Dipti, Samira, Solmaz, Sheila and Sheila, Suheir, Maisha,
marcos, and Zara. Thank you, Dalia.

This work was performed at the UC Berkeley Parallel Computing Laboratory (Par Lab), sup-
ported by DARPA (contract #FA8750-10-1-0191) and by the Universal Parallel Computing Research
Centers (UPCRC) awards from Microsoft Corp. (Award #024263) and Intel Corp. (Award #024894),
with matching funds from the UC Discovery Grant (#DIG07-10227) and additional support from
Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Oracle, and Samsung. This research
used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract #DE-AC02-05CH11231.

xiv

Chapter 1

Introduction

A natural tension exists between the software goals of productivity and performance, with pro-
ductivity enabled by abstraction layers that hide low-level hardware and software features, and
performance enabled by implementing algorithms that carefully map onto those features. This
thesis addresses the problem of how to write applications at a high level of abstraction while
simultaneously obtaining performance that reflects highly-tuned code, sometimes near the hardware
performance limit for a given computation. It addresses the ever-widening gap between performance
and productivity, due to increases in complexity in both hardware and applications.

Performance tuning has become more challenging over time, and ultimately has led to the
failure of general-purpose language compilers to generate highly-optimized code. One might see an
order of magnitude better performance from hand-optimized code over compiled code, even for
relatively low-level languages like C or Fortran. The end of clock speed scaling and the resulting
multicore architectures and vector extensions have made this problem worse, since it adds automatic
parallelization to the challenges of writing compilers.

At the same time, the complexity of programs has grown immeasurably over the past two
decades. Whether the domain is web applications, computer games, or scientific simulations, the
most complex of applications are built using a variety of abstraction layers—from system-level
services and architecturally-tuned kernels at the bottom, to high-level languages and domain-specific
application frameworks at the top. These abstraction levels are essential to managing software
complexity, but add further challenges to performance optimization. It is not unusual to lose an
additional order of magnitude in performance going from non-hand-optimized C or Fortran code,
even when that code has not been highly tuned, to higher-level code in languages like Matlab,
Python, Perl, or Ruby.

The effectiveness of general-purpose compilers is limited by two factors: the inability of
program analysis techniques to determine what transformations are legal and the lack of accurate
performance models to determine what code should be generated from among the legal possibilities.
Even simple, easily-analyzable loop nests that operate on arrays, such as the three nested loops of
matrix multiplication, can suffer from the latter. Automatic performance tuning or auto-tuning has
emerged as a popular technique, taking a limited algorithmic domain and building a code generator
that produces many possible implementations, typically in a language like C. The insight is that
highly-optimized (but still portable) code can be written in C, if written carefully, so the most
dramatic tuning can be done at the source level, producing an implementation that the compiler
can effectively translate. The selection problem is handled by search—running each version and

1

selecting the best-performing. The analysis problem is circumvented, because the code generator is
written with the knowledge of what possible implementations are legal; for example, one does not
transform three nested loops, but simply generates code that correctly implements matrix multiply.
Libraries like FFTW [39], Atlas [118], SPIRAL [98], OSKI [115], and pOSKI [56] all use this idea,
leveraging a wide range of techniques for producing the set of legal implementations and searching
over them.

But while automatic tuning has produced high performance libraries, including libraries callable
by scripting languages, there are several problems with this approach. First, code generators, often
written using ad-hoc programming techniques, are themselves tedious and error-prone programs
to write. Second, even a well-designed library interface can be cumbersome in the context of a
high-level language. Libraries have particular problems when parameterized over functions, as
in the case of structured grid computations or graph traversals that sweep over a data structure
while applying some user-defined function. The traversals cannot be effectively tuned without
including the operator; for example, optimizing a structured grid computation depends intimately
on the number of neighboring values involved in each operator. Therefore, one cannot build a
highly-optimized stencil library independent of the operators, and at the same time, the number of
interesting operators is unbounded, so one cannot build a library instance for each one in advance.

This thesis introduces the concept of Selective Embedded Just-in-Time Specialization (SEJITS),
which combines the power of high level scripting languages (including support for introspection and
foreign function interfaces), domain-specific language extensions, dynamic code generation, and
automatic performance tuning. The result is set of powerful domain-specific embedded languages
(DSELs) that provide highly-optimized performance on a variety of machines, using software
infrastructure we build to support this approach.

1.1 Thesis Contributions
This thesis makes the following contributions:

• We provide a framework in Chapter 5 for writing domain-specific code generators through a
set of abstractions for manipulating and generating code and demonstrate their use in building
auto-tuners.

• We demonstrate the use of introspection within a high level scripting language (Python) and
use it to dynamically analyze and generate optimized versions for multiple architectures in
our case studies (Chapters 7–13).

• We develop a technique for auto-tuning computations that involve higher-order functions, i.e.,
stencils or graphs, that can only be tuned after instantiation with a user-provided operator, in
Chapters 10 and 12.

• We show, in Chapters 10 and 12, how an intermediate representation based on declarative
semantics can provide the freedom needed to transform code without the need for difficult
analyses.

• In Chapter 9, we demonstrate an approach for auto-tuning structured grid kernels using phased
transformations combined with domain-specific knowledge. Unlike previous approaches

2

that optimized single instances of a structured grid kernel, this proof-of-concept auto-tuning
system can optimize many different kernels across many architectures.

• We demonstrate, in Chapter 10, a simple imperative language for expressing structured
grid computations that is translated using introspection into a declarative intermediate form
allowing for a large set of possible implementations. We demonstrate the high-level interface
and its restrictions, which eliminate the need for complex analysis. The results show near-
optimal performance.

• We show a second case study in Chapter 12 of graph traversal algorithms that uses an existing
hand-tuned library (CombBLAS) and solves an important performance problem of optimizing
over user-provided operators written in a high level language. The traditional approach of
calling back to the high level language is prohibitively expensive. The resulting performance
meets and sometimes exceeds hand-optimized code that is specialized for a particular operator.

• We demonstrate the effectiveness of our framework as a vehicle for delivering library auto-
tuning to high-level languages for computations for which a full DSEL is unnecessary, in
Chapter 13.

• In Chapter 13, we show that our infrastructure enables building DSELs that execute on GPUs,
multicore CPUs, clusters using MPI, and in the cloud.

• We demonstrate the use of our framework by others in Chapter 13 who are not primary
developers of the framework, showing that is a viable approach for performance programmers
to use.

1.2 Thesis Outline
The following is an outline of the this thesis:

Chapter 2 provides background and motivates the need for high performance DSELs in high-
level languages given current trends in hardware and software, including auto-tuning and auto-tuning
compilers. We describe the Productivity-Performance gap, the central motivation for building high
performance, high productivity systems.

In Chapter 3 we outline related work in the areas covered in this thesis, including DSELs,
auto-tuning, and prior work for optimizing the two major case studies in the thesis: structured grid
computations and graph algorithms.

Chapter 4 describes one of the central contributions of this thesis: the Selective Embedded
Just-In-Time Specialization (SEJITS) methodology. This chapter explores the high-level ideas of
the methodology and discusses the impact on delivering high performance and high productivity,
even if only a subset of the ideas are used.

Chapter 5 introduces the Asp (Asp is SEJITS for Python) software infrastructure for implement-
ing the SEJITS methodology in Python. It begins by demonstrating how a performance programmer
can use the infrastructure to build small high-performance DSELs using Asp, then covers the
different capabilities of Asp in more detail.

3

In Chapter 6 we describe the machine architectures used in this study as well as the methodolo-
gies for measuring performance, both as an absolute measure and as a fraction of theoretical peak
performance for a given architecture.

Chapter 7 presents an overview of the six case studies in the thesis and outlines the importance
of each as well as their computational domains.

Chapter 8 is an overview of the structured grid motif. This chapter illustrates the kinds of
computations that make up the structured grid domain, how they differ from one another, and
describes optimizations from the literature. Although this chapter is not meant to be comprehensive,
it outlines some major aspects of this class of computation and gives some background on how they
can be optimized.

Chapter 9 describes our first attempt at optimizing structured grid kernels in a general way
using auto-tuning. Prior work has focused on individual applications, but this chapter shows
that a framework based on code transformation can optimize a subset of structured grids using
domain knowledge and obtain high performance across architectures, and across CPUs and GPUs.
Performance is compared against theoretical peak, and results show the auto-tuner can obtain up
to 98% of peak performance. We describe some limitations of this approach that motivate using
DSELs instead of simple program transformations or external DSLs.

Chapter 10 is the first case study in this thesis, an auto-tuned high performance DSEL for
structured grid computations. Taking the successes and lessons from the previous chapter into
account, this DSEL optimizes a large class of structured grid computations while allowing users
to express their computation in high-level Python code. Correctness is ensured by defining an
intermediate representation that expresses only correct, compilable computations. Performance
results show three orders of magnitude speedup versus pure Python and 100× speedup over
optimizing compilers. The DSEL outperforms state-of-the-art external DSLs [105] for structured
grid computations while being far smaller and simpler, due to being implemented with Asp in a
high-level language.

In Chapter 11, we introduce the graph algorithms motif and describe graphs, their properties, and
common representations. Different applications, basic computations, and programming models are
compared, concentrating on the linear algebra representation. The Knowledge Discovery Toolbox
(KDT) [74], the Python package we use as a basis for our work, is described.

Chapter 12 demonstrates the SEJITS approach by building two different DSELs for graph
analysis in KDT. The first enables users to restrict algorithm application to a subset of the graph
using on-the-fly filtering, and improves performance to eliminate almost all overhead due to Python
filtering. The second DSEL allows advanced users to write new graph algorithms in Python
by defining the building blocks of KDT graph algorithms in high-level code. By compiling the
DSEL into low-level code, over 2× performance increases are obtained. This results in increased
productivity for creating new graph algorithms in KDT.

Chapter 13 outlines three libraries built by others using Asp. First, we describe an auto-tuner
for the matrix powers computation that occurs as a building block of communication-avoiding
Krylov subspace methods [81] for solving linear equations. The resulting solvers can be written
in Python yet outperform even highly-optimized vendor libraries. The second library implements
the Expectation-Maximization algorithm for Gaussian mixture modeling [82] and uses auto-tuning
to obtain high performance across platforms and even between CPUs and GPUs. With code
generation from templated source snippets, this library outperforms the original hand-optimized
implementations and is now the basis for research in the speech domain. Finally, we describe a

4

DSEL for the Bag of Little Bootstraps (BLB) [64] statistical method, showing that DSELs can use
multi-backend code generation to run in the cloud as well as locally in parallel.

Chapter 14 synthesizes the results from our case studies and outlines lessons learned. We
discuss insights from the implementations. Future work in high performance high productivity
programming are described as well, both in the context of the SEJITS methodology as well as other
complementary approaches. The thesis concludes with a summary of the many contributions and
their potential impact.

5

Chapter 2

Motivation and Background

This chapter describes the necessary background motivating the need for a methodology and
infrastructure to enable high performance and high productivity. Section 2.1 discusses current
hardware trends, including the move to multicore. In Section 2.2, we describe trends for modern
software development, especially in the arena of web applications. Section 2.3 outlines the major
problem this thesis works to mitigate: the Productivity-Performance Gap. Section 2.4 outlines
auto-tuning, one of the major methodologies we will leverage in this thesis. Finally, Section 2.5
summarizes.

2.1 Trends in Computing Hardware
For many decades of computer processor design, as new processors were built they followed
Moore’s Law, which predicts that the number of on-chip transistors doubles approximately every two
years [83]. Much of this doubling is due to advances in complementary metal-oxide-semiconductor
(CMOS) technology, which results in smaller and smaller feature sizes in integrated circuits. As a
result, the feature sizes have shrunk from 500 nanometers to 22 nanometers in the span of 22 years.

Previously, each shrink allowed a commensurate increase in CPU clock rate. However, due
to power and cooling limits at lower feature sizes, clock rates have reached a plateau and can no
longer be scaled higher; since around 2004, mainstream processors have hovered around the same
clock speeds. Figure 2.1 shows the scaling of the number of transistors as well as clock speeds for
historical processors, illustrating the clock speed plateau.

Instead, processor manufacturers made a gamble on multicore: using the increased number of
transistors to build many identical processors on the same die, connected by an integrated on-chip
interconnect. Unlike scaling processor speeds, there is no automatic performance increase from
multiple cores. In order to fully utilize multiple processors, code must be reprogrammed with
parallelism in mind. As Figure 2.1 shows, the increase in the number of cores began in earnest as
clock scaling stopped, continuing the applicability of Moore’s Law.

As the number of cores in each CPU increases, there is a need to increase memory bandwidth
between DRAM and CPU commensurately in order to obtain the same performance. Thus, there is
a trend to increase the number of channels between the two, though such a trend cannot continue
indefinitely. Furthermore, on today’s processors, fully saturating memory bandwidth requires using
more than a single core. Thus, parallelism is necessary even for applications that are bound by

6

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

Figure 2.1: Historical processor trends, 1975-2011. This graph demonstrates that although Moore’s
Law continues, resulting in increases in transistor counts, clock speed increases have stalled.
Additional transistors are being used by increasing numbers of cores in processors. Data gathered
by Herb Sutter, Kunle Olokotun, Lance Hammond, Burton Smith, Chris Batten, Krste Asanović,
Angelina Lee, and Katherine Yelick.

memory bandwidth performance, not just those bound by CPU performance.

2.2 Trends in Software
High-level languages have found footing in domains such as web programming, but lack support
for parallelism or performance programming. Another term for many of these language, “scripting
languages,” refers to the class of programming languages whose primary purpose is to enable calling
other programs and composing them, while performing intermediate tasks such as parsing one’s
output to alter and pass to another program. Examples of such scripting languages include Tcl [107],
Perl [108], Python [100], and Ruby [102]. Such languages contain relatively high-level constructs
as well as feature-rich standard libraries and an ecosystem of third-party addons that are easy to
install. They have found widespread use among system administrators and users for performing
common tasks. Performance is not a first-class concern for such languages, but these tasks usually
do not require it.

Recently, with the emergence of the internet as a first-class platform, such scripting languages
have been widely used to build web applications due to their high-level nature, familiarity, and
ease-of-use. One of the major languages to emerge for this field is Ruby, which, along with the
web programming package Ruby on Rails, has enabled rapid development of web applications.
Because Ruby has strong metaprogramming support, the Ruby on Rails framework extensively uses

7

metaprogramming to increase productivity, and, as a result, many new programmers are becoming
familiar with high-level languages and their potential. In fact, some case studies have demonstrated
2—5× increases in productivity due to using high level languages rather than low-level ones [24,
53, 96].

In addition, Ruby on Rails and similar frameworks make extensive use of domain-specific
languages (DSLs) for tasks such as database creation and expressing relationships between data,
provisioning servers, and testing. These DSLs may be as simple as thin veneers over application pro-
gramming interfaces (APIs) or as complex as declarative languages that are dynamically interpreted
or compiled. For example, the ActiveRecord package [48] in Ruby on Rails allows programmers
to express database queries as successive method calls on objects; these calls are dynamically
translated into optimized structured query language (SQL) for use with backend databases. Such
a DSL that uses the host language’s syntax yet alters the semantics is called an domain-specific
embedded language (DSEL). Thus, programmers are becoming more familiar with programming
using many different DSLs, each suited for a particular type of task.

Due to the multicore revolution, parallel programming is becoming more important for obtaining
sufficient performance. However, these high-level languages generally have poor support for parallel
programming. Many scripting language interpreters employ non-threadsafe internal structures that
must be protected from concurrent access. For example, in the standard Python interpreter, a Global
Interpreter Lock (GIL) prevents more than one thread from running at once in order to protect the
interpreter’s state [9]. Furthermore, these languages are almost always garbage collected, but the
collectors are rarely threadsafe. Hence, even if parallelism support is added to scripting languages,
rewriting large portions of the interpreters will be necessary.

To obtain high performance, programming current multicore processors requires intense low-
level tuning, paying careful attention to details of both the operations required by the application
and intricacies of the processor, memory system, and available parallelism. Because of the inherent
overheads of interpreting a language and due to the inability of these languages to allow users to
express low-level data movement and computation, it is unlikely that simply adding parallelism
would bridge the 3 orders of magnitude performance differences between high-level and low-level
languages.

2.3 The Productivity-Performance Gap
Domain scientists or domain experts are scientists who utilize computers in order to perform
scientific investigations, such as simulating the climate or analyzing structures of social networks.
Such scientists lack a strong programming background or formal computer science training, and
instead prefer to think of their problems in a way that maps to their domain. In particular, such
scientists prefer to program in Matlab or some other high-level language that consists of operations
they are familiar with, even though such programs may not meet necessary performance goals when
running on realistic data sizes. Since productivity is their main goal, we refer to such programmers
productivity programmers, and the languages they use as productivity-level languages (PLLs).

Indeed, one common pattern for such science is for domain scientists to prototype their algo-
rithms in Matlab using small datasets until they are reasonably confident of correctness. Then, the
program is passed to experts in programming efficient, low-level code, whom we call efficiency
programmers. These programmers focus less on the underlying science behind the application, but

8

instead concentrate on rewriting correct prototypes into low-level parallel implementations that
can achieve orders of magnitude faster performance. Such performance is often necessary for the
scientific results to have meaning; for example, climate simulation must be run with quite large
datasets in order to obtain reasonable results for large timescales. If the program is not optimized,
the performance can be too slow to give usable results [117].

This two-phase approach results in a number of problems. First, the efficiency programmers
must re-implement already-correct code, which is an opportunity for introducing errors due to
mistranslation or not understanding all details of the original implementation. In addition, this
faster version intersperses machine-specific and performance-specific code within the algorithm.
The result is a program where algorithmic and performance considerations are mixed together,
and can be difficult to maintain given that the efficiency programmer is generally not proficient in
algorithmic aspects while the productivity programmer is not familiar with performance-conscious
constructs. This performance is rarely cross-platform, since even slight revisions to architectures
change how optimal code should be structured. Finally, the approach is not scalable: it requires
many programmer-hours to rewrite code for each platform in order to obtain good performance.

This implementation anti-pattern [67] is the result of a tradeoff programmers must make: they
can either program in high level languages and obtain 5× the productivity, or program in low-level
efficient languages and obtain 5−−10× the performance. We call this the Productivity-Performance
Gap [22]. This thesis explores how to bridge this gap and eliminate the tradeoff.

2.4 Auto-tuning and Auto-tuning Compilers
Although modern optimizing compilers incorporate complicated analyses and can perform auto-
parallelization, auto-vectorization, and a host of other optimization techniques, they cannot always
generate the best compiled code for the programmer’s computation. This is due to the fact that
general compilers must infer programmer intent from low-level code, and therefore can only
use program text and analysis to determine whether optimizations are safe. Compilers must be
conservative in their application of optimizations.

As a result, programmers who are in need of the best possible performance perform domain-
specific optimizations by hand, either by altering the source code or by hand-writing assembly for
the most performance-critical parts of the application. Because language-level constructs in low-
level languages have semantics that convey little information about the higher-level computation,
performance programmers can often hand-rewrite and hand-transform code in ways that may be
unsafe if applied generally but safe given the computation at hand. For example, in C, arrays
are encapsulated by a pointer to the beginning and indexing uses pointer arithmetic. For a code
that reads from one array and writes to another, the compiler may not be able to prove that the
pointers point to strictly disjoint pieces of memory, and may therefore not be able to reorder loop
iterations (this problem is referred to as pointer aliasing). However, a programmer who knows that
the application is always used in a manner that prevents overlapping arrays can hand-apply these
optimizations.

However, hand-tuning is tedious and fragile, since programmers must write many more lines of
code to implement these optimizations. Furthermore, the hand-tuning usually is highly machine-
specific; for example, when rewriting performance-critical sections to use SIMD instructions,
the specific instructions available differ from platform to platform and even from generation to

9

generation from the same manufacturer.
An alternative to manual tuning is auto-tuning, which uses code generation to generate many

different versions of the same code with different code optimizations applied, then runs all of them
to determine empirically which version is appropriate for the set of inputs on that particular machine.
For example, an auto-tuner for matrix multiply may apply different loop blockings for each version.
Auto-tuning was first applied to this domain in the PhiPAC research project [14]. In addition to
generating many versions, each version uses a subset of the low-level language that is easy for
compilers to analyze and does not require extensive compiler transformations. This approach
essentially uses the low-level language (C, C++ , or Fortran) as the assembly language. Auto-tuning
enables portable performance as long as the code is auto-tuned on each platform separately.

Auto-tuned libraries are limited in that they are only suitable if the computation at hand can
be expressed in a library, partially due to high performance codes being written in languages that
do not have support of higher-level programming features. Not all computational motifs can be
encapsulated in a library: for example, in structured grid computations, the function applied at each
point changes from application to application, making it difficult to turn into a library in low-level
languages that do not support higher-order functions. However, the approach has demonstrated
successfully that domain-specific optimizations can be encapsulated and use code generation for
cross-platform high performance.

Besides libraries, it is possible to implement auto-tuning within a general compiler; instead
of using hard-coded heuristics to generate assembly that implements a function, the compiler can
empirically run different versions. However, this approach is still hampered by the lack of high-level
domain-specific information at the level the compiler is operating, since it only can manipulate the
low-level code and must determine what optimizations to apply through analysis of this low-level
version.

2.5 Summary
While trends in hardware have resulted parallelism being required to obtain performance gains,
programmers are increasingly using higher-level languages that allow concise expression of com-
putation. However, obtaining performance requires manipulating data and computation at low
levels with deep knowledge of the particular hardware. Auto-tuning is one means for automatically
determining the best way to write a particular library operation, without needing to understand all
of the complexity of modern hardware. This thesis utilizes work in compilers, auto-tuning, and
domain-specific languages to build a methodology for enabling high performance highly productive
programming, a methodology that is necessary if future non-expert programmers are to benefit from
the multicore revolution while still programming in productive, high-level languages.

10

Chapter 3

Related Work

This thesis spans several areas of research, combining performance optimization, domain-specific
languages, and acceleration of particular types of computation. In this chapter, we outline related
work from the various areas. In Section 3.1 we describe related work for improving performance of
computational kernels. Section 3.2 outlines approaches for increasing the performance of Python,
the host language for our domain-specific embedded languages. Related work in DSELs is described
in Section 3.3. Just-in-Time compilation and specialization are covered in Section 3.4. Section 3.5
describes related work in optimizing structured grid algorithms, and Section 3.6 covers some related
work in improving graph algorithm performance. Finally, Section 3.7 summarizes the related work.

3.1 Optimized Low-level Libraries and Auto-tuning
Auto-tuning was first applied to dense matrix computations in the PHiPAC library (Portable High
Performance ANSI C) [14]. Using parameterized code generation scripts written in C, PHiPAC
generated variants of general matrix multiply (GEMM) with a number of optimizations plus a
search engine, to, at install time, determine the best GEMM routine for the particular machine. The
technology has since been broadly disseminated in the ATLAS package [118]. Auto-tuning libraries
include OSKI [115] and pOSKI [56] (sparse matrix-vector multiplication), FFTW [39] (Fast Fourier
Transforms), SPIRAL [98] (signal processing transforms), and stencils (Pochoir [105] and others [30,
59]), in each case showing large performance improvements over non-auto-tuned implementations.
With the exception of SPIRAL and Pochoir, all of these code generators use ad-hoc Perl or C with
simple string replacement, unlike our template and tree manipulation systems. Efforts to integrate
auto-tuning with compilers [112] have resulted in speedups for certain applications and kernels, but
are not fully-automatic, requiring programmer intervention to guide the compiler.

The OSKI (Optimized Sparse Kernel Interface) sparse linear algebra library [115] precompiles
144 variants of each supported operation based on install-time hardware benchmarks that take hours
to run, and includes logic to select the best variant at runtime, but applications using OSKI must
still intermingle tuning code (hinting, data structure preparation, etc.) with the code that performs
the calls to do the actual computations. The parallel version of OSKI, called pOSKI [56], explodes
the search space due to including parallel parameters as part of the auto-tuning.

Petabricks [5] is a language and compiler that treats algorithmic choice as a first-class part of the
language. Users can specify many different ways to compute the same thing, and the compilation

11

system uses auto-tuning to generate best implementations. Active Harmony [26] is a similar system
for full applications that tunes performance for applications with many components, each with many
degrees of freedom. An alternative approach to optimized low-level code is to use synthesis, such
as that provided by the Sketch [103] compiler. In this case, the compiler uses as input optimized
skeleton code with holes along with a non-optimized specification and generates optimized code
using the skeleton that executes (provably) the same computation as the non-optimized code for all
inputs.

Inspector-executor strategies [79] apply automatic tuning to irregular applications by examining
data structures at runtime to determine the best strategy for execution on a parallel machine.
Automatic frameworks for such computations are currently under development [68], and show the
potential for run-time auto-tuning for irregular computations on current architectures.

Most widely-used libraries written in efficiency languages do not gracefully handle higher-order
functions as required for the structured grid and graph DSELs—even if the productivity language
from which they are called does support them. This is usually because the efficiency languages
do not have well-integrated support for higher-order functions themselves. Even libraries such as
Intel’s Array Building Blocks [85] or others using C++ expression templates cannot benefit from all
the runtime knowledge available to DSEL compilers.

3.2 Accelerating Python
A popular way to provide good performance to productivity-language programmers has been to
provide native libraries with high-level language bindings such as SciPy [57] and NumPy [88]
(which collectively provide almost equivalent functionality to Matlab for Python programmers) and
Biopython [27]. However, this approach can only be applied to domains where libraries are the
appropriate delivery vehicle, and does not apply to user-written code.

The Weave subpackage of SciPy allows users to embed C++ code in strings inside Python code;
the C++ code is then compiled and run, using the NumPy and Python C APIs to access Python data.
Cython [11] is an effort to write a compiler for a subset of Python, while also allowing users to write
extension code in C. Similarly, the ctypes package is a part of the standard library in Python that
allows users to interface with C libraries by providing information about types and library functions,
enabling the wrapping of C libraries to move from C code to Python code.

Closer to our own approach is Copperhead [22], which provides a Python-embedded DSEL that
translates data-parallel operations into CUDA GPU code. Compilation is triggered by the presence
of annotations, unlike our class-based approach. Copperhead utilizes PyCUDA [66], a library
similar to CodePy [65], which we use. These enable expressing CUDA or C++ code as mixed
trees and strings in Python; the libraries can compile the expressed low-level code and execute it,
returning results to the user.

3.3 Domain-Specific Embedded Languages
Domain-specific embedded languages are used in many programming languages such as Lisp
(with its macro system), Scheme and Racket [93] (which allows even changing the syntax for
DSELs) and Haskell [71]. The term DSEL is due to Hudak, who describes circumstances in which

12

such languages are useful [52]. Similarly, Mernik [78] attempts to derive a pattern language for
domain-specific languages, included those that are embedded in a host language.

Like the Delite project [23] (the most similar recent work to our own), we exploit domain-
specific information available in a DSEL to improve compilation effectiveness. In contrast to that
work, we allow compilation to external code directly from the structural and computational patterns
expressed by our DSELs; in the Delite approach, DSELs are expressed in terms of lower-level
patterns and it is those patterns that are then composed and code-generated for. Put another way, by
eschewing the need for intermediate constructs, SEJITS “stovepipes” each DSEL all the way down
to the hardware without sacrificing either domain knowledge or potential optimizations. The most
prominent example of this is that SEJITS allows using efficiency-language templates to implement
runtime-generated libraries (or “trivial” DSLs). Furthermore, auto-tuning is a central aspect of our
approach, enabling high performance without needing complex machine and computation models.

For C++ , the Proto toolkit [86] simplifies the creation of DSELs that use expression templates.
Like Asp, Proto advocates the use of grammar-based DSELs and makes their implementation
far simpler; however, Proto does not enable run-time specialization of the code, sticking to the
C++ compile-time model.

3.4 Just-in-Time Compilation & Specialization
Early work on specialization appeared in the Synthesis Kernel, in which a code synthesizer spe-
cialized kernel routines on-the-fly when possible [97]. Engler and Proebsting [36] illustrated the
benefits of dynamically generating small amounts of performance-critical code at runtime. Jones [58,
42] and Thibault and Consel [111] proposed a number of runtime specialization transformations
to increase performance of programs, including partial evaluation or interpreters customized for
specific programs. Despite their different contexts, these strategies, like SEJITS, rely on selectively
changing execution of programs using runtime as well as compile-time knowledge.

Sun’s HotSpot JVM [91] performs runtime profiling to decide which functions are worth the
overhead of JIT-ing, but must still be able to run arbitrary Java bytecode, whereas SEJITS does not
need to be able to specialize arbitrary productivity-language code. Our approach is more in the spirit
of Accelerator [106], which focuses on optimizing specific parallel kernels for GPUs while paying
careful attention to the efficient composition of those kernels to maximize use of scarce resources
such as GPU fast memory. Asp is more general in allowing DSEL implementers to use the full set
of Python features to implement DSEL compilers that capture their problem-solving strategy.

PyPy [16] is a reimplementation of the Python interpreter that uses translation from Python to
a restricted typed subset (called RPython) along with a Just-in-Time interpreter. Unlike the JVM
and Microsoft’s CLI [104], the virtual machine for RPython is designed from the ground up for
dynamic languages. This approach yields a 5.5× speedup over the standard Python interpreter, but
the current PyPy implementation does not support many of the libraries needed by users in scientific
programming, mainly due to insufficient support in PyPy for the C API used by extensions for the
standard Python interpreter. Nevertheless, PyPy’s translation machinery is a potential interface for
creating new domain-specific translations that run (perhaps only partially) on the PyPy VM.

13

3.5 Accelerating Structured Grid Computations
Cache optimizations for structured grid computations are the subject of much prior work. Datta et
al [31] evaluated a number of optimizations for serial structured grid calculations, including the
partial 2D blocking of 3D grids due to Rivera and Tseng [101], and time skewing [122], which
blocks in both space and time to optimize cache reuse, as well as the cache-oblivious stencil
algorithm [40], which successively recurses on subsets of the structured grid in order to perform the
calculation on a working set that fits in cache and is implicitly blocked in time and space.

Auto-tuning structured grid calculations for parallel multicore using code generation scripts is
the subject of Datta’s thesis [30] and a large set of possible optimizations are described in Williams’s
thesis [121]. The latter applies auto-tuning to LBMHD [120], a lattice Boltzmann application with
several complicated structured grid kernels. In both of these cases, the auto-tuning is specific to the
application or kernel. However, the set of optimizations forms a basis for building a more general
structured grid optimization framework.

PATUS [25] is a Java reimplementation of the structured grid auto-tuner in Chapter 9, with
similar functionality as the original, utilizing the same set of optimizations. Unlike our auto-tuner, it
allows users to define their own optimization strategies. Pochoir [105] is a domain-specific language
compiler that performs parallel cache-oblivious optimization of structured grid calculations. Unlike
our work, there is no auto-tuning utilized, and the DSL is not embedded or high-level.

A rich area of research into general optimizing compilers that has high applicability to structured
grid computations is the polyhedral model [45], which is an analysis applied to nested loops (such
as those that occur in structured grid computations) that treats them as a traversal of points bounded
by a polyhedron. The analysis attempts to reorder the computation (adding parallelism or reducing
cache traffic) while preserving dependencies. It has been applied to structured grid algorithms [17]
with some success. Unlike our approach, it does not use domain-specific knowledge or auto-
tuning, instead relying on general compiler analysis and heuristics. Polyhedral loop optimization is
integrated into the Gnu Compiler Collection (GCC) via the Graphite [94] package.

3.6 Accelerating Graph Algorithms
The Graph500 Benchmark [28] is the modern benchmark for measuring graph algorithm perfor-
mance. The major phase in the algorithm uses a set of Breadth First Searches (BFSs) and measures
the performance in terms of millions of traversed edges per second (MTEPS) and ranks the top 500
machines, similar to the Top 500 HPC benchmark [113].

A number of recent packages have been built to enable high speed graph analysis. Pregel [75]
was Google’s infrastructure used for certain graph algorithms performed on their large database of
web pages, though it has been superceded for internal use. The Combinatorial BLAS [20] is a set
of low-level algorithms that treat graphs as matrices and graph operations as linear algebra with
specialized semirings, allowing the package to implement well-known optimizations from the linear
algrebra domain to obtain excellent scaling and performance.

14

3.7 Summary
In this thesis, drawing on the existing research in auto-tuning and DSELs, we apply just-in-time
code generation and compilation techniques to DSELs in Python. We use run-time auto-tuning in
order to obtain best performance. Our major case studies, which describe DSELs for structured
grid computations and graph algorithms, draw on and advance the state of the art in both areas,
combining new techniques with previous research; in some cases, we extend the applicability of
previous work with our easier-to-use system for packaging domain-specific expertise in a way
usable for non-expert programmers.

15

Chapter 4

SEJITS: A Methodology for High
Performance Domain-Specific Embedded
Languages

In this chapter, we outline the Selective Embedded Just-In-Time Specialization (SEJITS) methodol-
ogy for domain-specific embedded languages. SEJITS enables small, easy-to-build DSEL compilers
for high-level languages, enabling high performance and parallelism. With SEJITS, programmers
who are not experts in performance programming can program in high-level languages while en-
joying the performance benefits of low-level parallel languages and the knowledge of performance
experts.

We begin with an overview of the SEJITS methodology in Section 4.1. Section 4.2 outlines
DSELs in productivity languages and contrasts them with application programming interfaces
(APIs). Sections 4.3 and 4.4 talk about two mechanisms essential to SEJITS: code generation and
auto-tuning. Section 4.5 describes some best practices for building DSELs in the methodology. In
Section 4.6 we outline requirements for hosting languages for the SEJITS methodology. Section 4.7
summarizes the chapter.

4.1 Overview of SEJITS
In this chapter, we will use a simple example to motivate the methodology. Consider a domain
scientist who is an expert in a particular scientific area, but is not an expert programmer. The
domain scientist wishes to write a scientific application that simulates a physical process using a
new method, and within this application, several computational kernels are used, including a graph
algorithm kernel (see Chapter 11). However, if these kernels do not run with high performance, the
prototype application will not be able to yield useful results. The SEJITS methodology aims to
enable this high performance.

An overview of the SEJITS methodology is shown in Figure 4.1. In the methodology, domain-
specific portions of high-level productivity layer user code (written in a language such as Matlab,
Python, or Ruby) is transformed into high-performance candidates in low-level efficiency layer code
(in a language such as C, C++ , or CUDA) automatically, and run on the low-level parallel hardware,
returning results back to the high-level interpreter. Subsequent runs utilize different generated code

16

Non-DSL
Code!

Program!

Code in DSL
A!

Code in DSL
B !

Interpreter!

Data!

DSL
Codegen!

External
Compiler!

Dynamic
Link Library!

Data! Code in DSL
A!

C
om

pi
le

 P
ha

se
!

Ex
ec

ut
e

Ph
as

e!

Result!

Figure 4.1: An overview of the SEJITS methodology. When a program containing DSEL code
is run, the code triggers the interpreter to call a DSEL compiler (itself a set of libraries in the
interpreted language) which dynamically generate external low-level code, which is compiled into
a dynamic link library. This library is then called via the interpreter’s foreign function interface
with the input data, and results are returned to the interpreter. The compile phase only occurs if
necessary; dynamically-created libraries are cached so that only the execute phase occurs after first
run. Note that auto-tuning is elided for simplicity.

17

variants, until the best code variant is found, which is then always used.
Thus, in our running example, the portion of the code that defines computation on the graph is

selectively and automatically transformed into a number of parallel variants in C++ and compiled;
one of these variants is run in place of the high-level code defining the computation. To the
programmer, however, it appears that the entire application ran in the high-level language interpreter.

SEJITS combines two separate features that exploit abilities of modern high-level “scripting”
languages: embedded domain-specific languages, and runtime code generation with auto-tuning. In
particular, SEJITS exploits the ability of modern scripting languages to introspect themselves, call
external programs, and interface with external libraries using a highly-capable Foreign Function
Interface (FFI). Along with these mechanisms, the methodology suggests a set of best practices
that make the DSELs more useful for productivity programmers and easier to write for efficiency
programmers. Together, these mechanisms and best practices form a new point in the design space
of DSELs, enabling highly productive programming for non-expert programmers using languages
they are already familiar with, as well as enabling performance programmers to productively build
reusable DSEL compilers.

By separating out the roles of domain scientists and efficiency programmers, SEJITS enables
a separation of concerns that allows each programmer to write code suited for the level they are
most familiar with, as shown in Figure 4.2. In our running example, this means that the domain
scientist only need worry about the correctness of their application; efficient execution of the
graph algorithm is ensured by the performance expert who designed the graph DSEL. In addition,
efficiency programmers can interface with third-party optimized libraries when necessary instead
of needing to implement everything themselves. This is useful when existing libraries already
do a good job of tuning the calculation, such as Intel’s MKL [54] for dense matrix operations,
FFTW [39] for Fast Fourier Transforms, or OSKI [115] for sparse matrices.

The target region for domain-specific embedded languages with the SEJITS methodology is
shown in Figure 4.3. Although embedding the DSLs into a high-level language may incur overheads
that could be avoided by writing in a hand-optimized low-level language, the resulting performance
is far better than using the high-level language alone. Furthermore, the productivity benefits— in
particular, the reduced lines of code due to separating optimization strategy from the implemented
computation— may make the source slightly longer than a pure high-level language. However, the
benefits of embedding plus code generation outweigh these possible downsides.

4.2 DSELs and APIs in Productivity Languages
Much of the previous work in domain-specific embedded languages concentrated on languages
designed to be extensible using metaprogramming, including Haskell and variants of Lisp. These
DSELs generally transformed host language code into other host language code, all running within
the language interpreter or compiler [71].

Widely-used productivity languages today have good metaprogramming capabilities, but may
not be well-suited for using these facilities for creating DSELs. Languages such as Ruby and
Smalltalk have been extensively used to create DSELs [48, 49] while others such as Python are
rarely used for DSEL creation. None of these languages have first-class macro systems. This lack
of macro programming makes it more difficult to create non-trivial DSELs.

The SEJITS methodology adds better DSEL support to such languages by utilizing the class

18

Application
Author!

Performance
Expert!

SEJITS
Infrastructure

Team!
3rd Party

Library Dev!

Kernel
Definition!

Kernel
Call!

Application! DSEL Compiler! Core Infrastructure! e.g. MKL!

Domain-
Specific

Transforms!

Intermediate
Representation!

IR Definition
Language!

Standard
Transforms!

Python AST!

Backend
ASTs!

Compilation
Framework!

Code
Snippets!

Compiled
Libraries!

Auto-tuning
Search!

Auto-tuning
Parameters!

Figure 4.2: Separation of concerns enabled by SEJITS. Application writers need only write their
applications to use the DSEL compilers (specializers), while performance experts restrict their
concern to domain-specific aspects of code generation. SEJITS infrastructure can be leveraged to
implement some general transforms and can abstract away compilation and caching of compiled
code. Efficiency programmers can also interface with existing low-level libraries which do not have
to be changed for use with SEJITS.

19

Speed!

Li
ne

s
of

 C
od

e!

Pure Python!

Unoptimized C!

Optimized C!

Asp Target Region!

Figure 4.3: Target region for SEJITS. The methodology trades some potential performance for the
ease-of-use of using embedded DSLs, but in return promises high performance at relatively lower
lines of user code.

(object-oriented) systems in these languages to encapsulate the metaprogramming transformations
required for each DSEL. Classes can be modified to parse selected functions using capabilities
already existing in such languages, and these parse trees can be manipulated by a SEJITS system.

Furthermore, encapsulation via class points to a simple way to ensure domains are small— a
class only needs to implement a domain-specific compiler for languages in its domain. Thus, the
implementation and interfaces for users appear to be extensions to the class hierarchy, similar to
libraries in modern productivity languages.

In our running example, the domain scientist designs their application to utilize a specific
class in order to execute the graph algorithm portion of their code; this class inherits from the
correct encapsulating class provided by the performance expert. In addition, the domain scientist
properly defines any computations in this class that are necessary for correct code generation. Such
restrictions are presented to the domain scientist in the DSEL documentation.

In contrast to Application Programming Interfaces (APIs), DSEL compilers do not necessarily
follow the execution rules of the host language. Indeed, DSELs we implement are internally
represented as declarative constructs, even though the programmer uses imperative syntax in the
DSEL. For example, DSELs such as ActiveRecord [48] that implement Object-Relational Mapping
(ORM) allow users to write code in the host language to query a database for objects, but the
semantics of the code follow SQL’s semantics. Thus, DSELs where the body of a function defines
a series of operations in the embedded language are more appropriately thought of as declarative
embedded languages, since they do not necessarily execute with the same execution model as the
host language interpreter but instead use the computation as written as simply a specification.

20

4.3 Code Generation
Modern productivity languages are well-suited for manipulating text, and include support for
regular expressions and other textual manipulations. Combined with the ability to write files
and call external programs, these capabilities allow non-trivial code generation and compilation
using external compilers. In the SEJITS approach, DSELs generally leverage external optimizing
compilers, since this enables reusing both the expertise of existing efficiency programmers (who are
used to writing code in these low-level languages such as C++ and CUDA) and reusing the expertise
embedded in the compiler (which has been tuned to highly optimize code).

Code generation in itself would be useless without the Foreign Function Interfaces in modern
productivity languages. These FFIs allow programmers in the productivity language to call libraries
written in C or C++ , as long as those libraries implement the correct interface and link against
the correct libraries. Importantly, most productivity languages allow loading arbitrary FFI-enabled
libraries during program execution. SEJITS leverages these FFIs to load freshly-compiled (or
cached) libraries into the running interpreter and execute them; this hides the compilation and load
steps from domain programmers.

A major reason for using the FFI and low-level languages is to support parallelism, which is
often unsupported by these productivity languages due to thread-unsafe interpreter structures. For
example, Python uses a Global Interpreter Lock (GIL) to ensure only a single thread is executing,
partially in order to ensure interpreter data structures do not become corrupted. External FFI-loaded
libraries do not have such limitations, as most interpreters disable garbage collection while external
code is running. Thus, for many productivity languages, the only path to reasonable parallelism is
to encapsulate parallel execution in FFI-loaded libraries.

Just-in-time code generation has some advantages as well. Because at call-time the information
about the data in the call is complete, dynamically generating the code allows specializing the
code for the particular data. This can be as simple as inlining loop bounds or as complicated as
introspecting matrix structures to see if calling symmetric-specific routines is appropriate. Although
runtime code generation does incur the overhead of producing the code, the code it produces can be
highly optimized with information specific to that execution.

Most importantly, code generation at runtime provides information that can limit the search
space for auto-tuning over the many possible ways to implement a calculation. For example, in an
auto-tuned SEJITS compiler for matrix operations, characteristics of the matrix could guide what
kinds of optimizations are possibly beneficial.

In our running example, the code generated for the graph algorithm is executed via the FFI, and
the results returned back to the overall program that is running in the interpreter. The particular
code generated for the algorithm may be specialized for the class of graphs the domain scientist is
using, thanks to runtime code generation.

The combination of DSELs and code generation is the most powerful use of SEJITS, but the two
capabilities can be used separately as well. In fact, some DSELs may not generate external code
but can instead generate Python code. Similarly, another use of SEJITS is for “trivial” DSELs that
contain only a single operation, such as the Gaussian mixture modeling library (see Section 13.2).
These trivial DSELs use the code generation and runtime auto-tuning capabilities of the methodology
to obtain high performance while looking, to the productivity programmer, like normal libraries. In
other words, the SEJITS approach is also a suitable mechanism for packaging auto-tuned libraries.

21

4.4 Auto-tuning
Compilers generally use complicated machine models and heuristics to attempt to generate optimized
compiled programs, but previous work (see Section 3.1) has shown that they do not produce the best
possible executables in many circumstances unless the user explicitly optimizes their code. In fact,
different code “appearances” that implement the same algorithm result in different performance.
Due to the difficulty of determining the right combination of explicit optimizations that results
in highest performance, low-level programmers use auto-tuning to generate a large number of
parameterized variants and then run them on representative inputs to find which variant gives the
best performance. Subsequently, this best-performing variant is used.

Because these large-scale compilers with many man-years of work cannot optimally generate
code, we do not expect that our small DSEL compilers will always be able to do so. Although the
small DSEL compilers have domain knowledge, enabling them to perform optimizations general
compilers cannot safely do, the output of our DSELs (i.e. low-level code) is dependent on the
external compiler for much of its performance. We therefore treat auto-tuning as a first-class
capability in SEJITS; many DSELs using the SEJITS methodology use auto-tuning and SEJITS
systems try to make auto-tuning as simple as possible.

Because in SEJITS compilation occurs at runtime, much of the auto-tuning is runtime auto-
tuning. In this approach, a DSEL compiler produces a number of variants for the calculation, and
each time the calculation is to be performed, a different variant is run, with historical performance
data preserved. Deciding in which order to explore variants can be done using a variety of methods
(such as hill-climbing, gradient ascent, or genetic algorithms). After all variants have been exhausted
or the auto-tuning system determines no more should be tried, subsequent executions use the fastest
variant.

Some variants for our running example may perform the graph algorithm slower than others,
but after running the program numerous times, whether for validation or through the course of
development, the variants have been pruned such that the fastest ones have been found. Subsequent
runs of the prototype application will always use this optimal variant.

The combination of code generation and auto-tuning is powerful and allows DSEL compilers in
the SEJITS approach to be less dependent on complicated machine models or heuristics. Runtime
auto-tuning provides empirical data for obtaining high performance.

4.5 Best Practices for DSELs in SEJITS
In addition to the mechanisms described previously, the SEJITS approach includes best practices for
DSELs. These conventions help make the user experience of using DSELs better for the productivity
programmer and help efficiency programmers more easily create embedded languages.

One major convention is that any valid host language program should run, even if the compiler
infrastructure does not yet support something the productivity programmer is attempting to write.
For example, if a programmer uses a valid Python construct, but the compiler requires it to be
expressed differently, the experience of having the program unexpectedly not run is frustrating.
Instead, the convention is that the DSEL itself should be valid Python, and if the compiler cannot
produce compiled code from the user’s source, the source itself runs directly in the interpreter. The
user is issued a warning (ideally showing how the code should be modified) and the execution still

22

occurs, albeit slowly.
To ease development of DSEL compilers, we believe they should be analysis-avoiding as much

as possible. That is, instead of relying on analysis to ensure user-supplied code is correct or to
determine how to translate to the lower-level language, the embedded language should force the user
to specify the necessary information, within reason. In other cases, additional information available
at runtime can be used in lieu of static analysis; since there is little distinction between compile-time
and runtime in a dynamic language, this information is available when code generation occurs. By
eliminating the need for most analysis, SEJITS should enable faster development of DSELs.

4.6 Language Requirements to Enable SEJITS
In order to support this combination of DSELs and runtime code-generation/auto-tuning, candidate
hosting languages for SEJITS must support a number of mechanisms in the language interpreter or
runtime.

Specifically, languages need to support the following capabilities:

• Writing files. Because SEJITS relies on external optimizing compilers, host languages must
be able to produce files to pass to the compiler.

• Calling external programs. DSEL compilers invoke external compilers, so the host language
needs to support this invocation, inheriting any necessary environment variables or search
paths used by the compiler.

• Parsing functions. Ideally, a host language should be able to parse (or return a parse tree for)
a function by name. When this is not possible, an equivalent capability would be to detect
where the currently-running file is located and run a parser (external or internal to the runtime)
that returns the necessary parse tree.

• Foreign Function Interface. Host languages must support the ability to interface with functions
written in the lower-level language, including support for manipulating data. Without this
capability, data must be serialized and passed between them using other mechanisms, resulting
in poor performance.

• Loading arbitrary shared libraries from user-writable paths. If the FFI does not support
runtime loading of arbitrary libraries, it is difficult or impossible to support seamless execution
of the newly-compiled code. Some environments, such as the Java Virtual Machine, do not
allow loading from arbitrary paths, and require users to set environment variables before
starting the JVM that dictate from where libraries can be loaded. Although this is less than
ideal, it can be worked around in SEJITS implementations.

The SEJITS methodology can still be implemented in the absence of some of these capabilities,
although it may require extensive workarounds. However, many modern productivity languages
support these features, including Ruby [102], Racket [93], Python [100], and Lua [109]. Other
languages, such as Scala [110] and Groovy [46], which run on the JVM, require some minimal
workarounds (for example, restricting code generation paths to known directories).

23

4.7 Summary
This chapter described the SEJITS methodology and outlined some of its salient features. In addition,
we see that a small set of best practices can ensure the best environment for non-expert programmers
without a huge amount of investment from developers. Many modern scripting languages can use
the SEJITS approach, which combines code generation/auto-tuning with domain-specific embedded
languages, bringing advantages from both.

24

Chapter 5

Asp is SEJITS for Python

In this chapter, we describe the infrastructure we have built in Python for implementing SEJITS
domain-specific embedded auto-tuning compilers. We begin in Section 5.1 with an overview of
Asp (Asp is SEJITS for Python). We illustrate Asp functionality using a trivial example DSEL
in Section 5.2. We then describe in more detail the facilities provided by Asp. In Section 5.3 we
describe the intermediate representation used in Asp, and Section 5.4 describes code generation
capabilities. Debugging support for developers of DSELs is outlined in Section 5.6 and auto-tuning
support is in Section 5.7. Section 5.8 summarizes.

5.1 Overview of Asp
We have built an infrastructure library called Asp for developing SEJITS auto-tuned DSL compilers
embedded in Python, using our strategy of generating code for an external compiler that is then run
using the foreign function interface. We choose Python as the target language for pragmatic reasons:
there is a large amount of momentum for the language, with many scientific programmers using it
as a replacement for Matlab by utilizing the SciPy and NumPy libraries [57, 88], which together
provide similar functionality as Matlab. Furthermore, the language supports the mechanisms
required for our approach, as outlined in Section 4.6.

A DSEL compiler in our approach generally consists of phased transformations that implement
the following steps at runtime (leaving aside caching for the moment):

• parsing program text into a Python Abstract Syntax Tree (AST),

• transforming the Python AST into a Semantic Model, an intermediate form expressing the
semantics of the domain-specific computation in terms of supported language constructs,

• optionally applying architecture-independent optimizations to the semantic model,

• then transforming the Semantic Model into an output AST for the target language,

• optionally optimizing the computation expressed in the output AST,

• generating program text from the output AST, including many possible versions if using
auto-tuning,

25

• and finally, compiling the generated code into a dynamic link library that is loaded into the
host language using its Foreign Function Interface (FFI) and run, returning the result to the
program while recording performance.

The overall flow is shown in Figure 5.1, with auto-tuning elided for simplicity. Note that many
of these steps can be cached for use in subsequent invocations, and such a cache is almost necessary
to amortize the overhead of compilation.

Asp provides functionality for obtaining Python ASTs from the interpreter, transforming ASTs
and Semantic Models, defining Semantic Models, generating code in supported backend languages,
compilation for a number of backend toolchains, as well as caching and calling previously-compiled
DSEL code, and auto-tuning. It builds on a number of existing Python libraries, and treats commonly-
used numeric collection types from the NumPy and SciPy libraries as built-in data structures, making
it easy to use them in DSELs.

5.2 Walkthrough: Building a DSEL Compiler Using Asp
In this section, we build a trivial DSEL compiler that performs very limited kinds of map operations
over lists of integers. A map operation applies a user-supplied unary function to each item of a
list or array. The DSEL we implement will allow expressing arithmetic map computations such as
those shown in Figure 5.2. Although the DSEL itself performs a trivial function, it demonstrates
some of the features of our approach as well as the features Asp provides for DSEL writers.

The figure illustrates the interface for DSEL end-users: the user creates a new class, subclassing
from the DSEL’s ArithmeticMap class, and writes the computation on each element as an instance
method f(x). The user then applies the custom function to each element of a list of integers using
the instance method map(). This use of standard Object-Oriented Programming (OOP) to express
computations is one of the characteristics of Asp DSELs.

Note that the code in Figure 5.2 is valid Python; that is, in the absence of any DSEL compilation,
a suitably-defined ArithmeticMap class would ensure that the Python code executes normally.
In this case, all the pure-Python ArithmeticMap class would have to do is call Python’s built-in
map() using the user-defined f() function.

We will now more formally specify the kinds of computations the DSEL will be able to
express; this is done by defining the intermediate representation, which we call the Semantic Model
after Hudak [52]. The goal of a Semantic Model is to express the set of computations the DSEL
implements. The user’s Python code is transformed into instances of the Semantic Model, and in
doing so, is turned into a structure that the later steps in the compilation flow can generate backend
code for.

5.2.1 Defining the Semantic Model
In Asp, the Semantic Model intermediate representation is a tree structure that defines the operations
allowable in a DSEL. Though the declaration of the Semantic Model looks similar to defining
syntax, it is used to concretely describe a particular instance of DSEL use, not to define the syntax
of that use. Put another way, the Semantic Model is a way of describing a declarative intermediate
representation that, once defined, restricts what computations can be generated by the DSEL; an

26

Do
m
ai
n'

Sp
ec
ifi
c-
Py
th
on

-
So
ur
ce
-

w
h
i
l
e

(
x
>
0
)

{
!

x

+
=

y
;
!

}
!

.
!

.
!

.
!

A
E
3
4
0
!

0
3
9
B
D
!

.
!

.
!

Co
m
pi
la
6o

n-

Ba
ck
en

d-
So
ur
ce
-

Co
m
pi
le
d-

Li
br
ar
y-

Ta
rg
et
'in

de
pe

nd
en

t-o
p6

m
iza

6o
ns
-

Se
m
an
6c
-

M
od

el
-

Fi
gu

re
5.

1:
St

ag
es

in
A

sp
tr

an
sf

or
m

at
io

n
fr

om
us

er
-s

up
pl

ie
d

pr
og

ra
m

te
xt

in
to

ob
ta

in
in

g
th

e
re

su
lt

of
th

e
co

m
pu

ta
tio

n.

27

from arithmetic_map import *

class Squarer(ArithmeticMap):
def f(self, x):
return x * x

class DoublePlusOne(ArithmeticMap):
def f(self, y):
return (y * 2) + 1

Squarer().map([1,2,3,4])

result: [1,4,9,16]

DoublePlusOne().map([1,2,3,4])

result: [3,5,7,9]

Figure 5.2: Examples of end-user code that utilizes the DSEL we build in this section.

instance of the Semantic Model is similar to a general compiler’s intermediate representation of an
instance of computation.

Our DSEL expresses basic arithmetic expressions by allowing the user to write a pure unary
function (one with a single input, since each item of the input list gets its own function invocation,
and no side effects). The function applied at each item is restricted to using integers and basic
arithmetic operations, to limit the implementation difficulty for this example. The Semantic Model
for ArithmeticMap is shown in Figure 5.3, written in Asp’s integrated DSEL for defining Semantic
Models.

Top-level node. We keep track of the input identifier to the unary function.

MapFunction(ReturnExp, input_id=String)

The computation must return something

ReturnExp(Expr)

Expr = Integer

| InputIdentifier

| BinaryOp

A binary operation here is one of +,-,*,/ and can use either the input

or an immediate integer

BinaryOp(left=Expr, op={ast.Add, ast.Sub, ast.Mul, ast.Div}, right=Expr)

Figure 5.3: Semantic Model for our simple ArithmeticMap DSEL, defined using Asp’s integrated
embedded DSL for the intermediate representation.

Although the example Semantic Model is quite simple, it illustrates several principles of
designing SMs. First, the goal of the definition is to, as much as possible, make instances of the
Semantic Model “correct-by-construction;” that is, an instance that conforms to the SM definition
will always be a correct instance in the sense that the DSEL compiler will generate correct code
for it. Secondly, the definition itself is written in our embedded DSL for Semantic Models, which

28

class ArithmeticMapSMBuilder(NodeTransformer):
turn the function definition into a MapFunction SM

def visit_FunctionDef(self, node):
assert len(node.args.args) == 2, "The number of arguments to f must be 2"
assert type(node.args.args[1]) == ast.Name
self.input_id = node.args.args[1].id

return MapFunction(self.visit(node), input_id=self.input_id)

def visit_Return(self, node):
return ReturnExp(self.visit(node.value))

def visit_Name(self, node):
assert node.id == self.input_id, "Unknown identifier %s" % (node.id)
return InputIdentifer(node.id)

def visit_Num(self, node):
return Integer(node.n)

def visit_BinOp(self, node):
return BinaryOp(self.visit(node.left), op, self.visit(node.right))

Figure 5.4: Code to convert a Python AST expressing a computation in our DSEL to a Semantic
Model instance.

makes it simple to define Semantic Models and to check their correctness— after each instance of
an SM is constructed during the initial phases of runtime translation, it is type-checked to make
sure the nodes match restrictions expressed in the definition. More details about the embedded DSL
for expressing Semantic Models are in Section 5.3.

After defining the Semantic Model, we must express how computations written using Python
syntax will be transformed into instances of the model.

5.2.2 Transforming Python to Semantic Model Instances
The top-level control for our DSEL compiler passes the parsed syntax tree for the function f() to a
tree transformer that performs node-wise transformation of the AST into an instance of the Semantic
Model. This is done using Asp’s NodeTransformer, which extends built-in Python functionality
to create a unified tree transformation framework for Python ASTs, Semantic Models, and backend
ASTs.

The transformations use the visitor pattern [92]. In this design pattern, DSEL compilers define
transformations by defining visitor functions for each node type; the infrastructure then calls the
appropriate node visitor function when visiting a particular node. Our code for transforming a
Python AST for f() to a Semantic Model instance is shown in Figure 5.4.

When converting the Python AST to a Semantic Model instance, we check any assumptions
the Semantic Model structure makes before converting the appropriate node. For example, the
number of arguments to the DSEL function f() must be two (following the Python convention that
instance methods have self as their first input). Similarly, since the only identifier allowed in the
computation is the input to f(), the transformer keeps track of this identifier and ensures that no

29

class ArithmeticMapCppTransformer(NodeTransformer):
def visit_MapFunction(self, node):
return cpp_ast.FunctionBody(FunctionDeclaration(cpp_ast.Value("int", "f"),

cpp_ast.Value("int",

node.input_var)),

[self.visit(node.body)])

def visit_ReturnExp(self, node):
return cpp_ast.ReturnStatement(self.visit(node.value))

def visit_InputIdentifier(self, node):
return cpp_ast.CName(node.id)

def visit_Num(self, node):
return cpp_ast.CNumber(node.value)

def visit_BinaryOp(self, node):
op_map = {ast.Add: "+", ast.Sub: "-", ast.Mul: "*", ast.Div: "/"}

return cpp_ast.BinOp(self.visit(node.left),
op_map[type(node.op)],

self.visit(node.right))

Figure 5.5: Backend code generator for the user-expressed f() function in our ArithmeticMap
DSEL.

other ones are used. If any assumptions are violated, DSEL compilers should give concrete, useful
feedback to the user as to why the computation cannot be compiled; such feedback is elided from
the example here for brevity.

For our simple DSEL, the transformer in Figure 5.4 is sufficient, but for larger, more expressive
DSELs, much of the DSEL implementer’s effort goes into deciding the interface for users (with
emphasis on making sure the interface is expressive, intuitive, and respects Python semantics) as
well as ensuring users receive useful feedback when their computations do not conform to DSEL
restrictions.

5.2.3 Generating Backend Code
The next phase of DSEL compilation takes a Semantic Model instance and converts it into backend
code, using a combination of templates (code in the output language with “holes” that are filled
in) and tree transformations. The transformer that turns our ArithmeticMap f() function into a
C++ function, again using the visitor pattern, is shown in Figure 5.5. Because we have already
ensured the constructed Semantic Model is restricted to what we can correctly compile, this code is
relatively straightforward.

For each node in the Semantic Model, equivalent nodes for a C++ AST are generated by our
transformer. Some of the assumptions about the transformed function are encoded in this class; in
particular, the C++ function always has the signature int f(int <input var>). This allows us
to include templated “glue” code (not shown) that handles unpacking Python arrays, applying the
function f() to each element, and returning the result.

An example of the output from our DSEL compiler is shown in Figure 5.6. In addition to the

30

#include "Python.h"

// generated from our user-supplied function

int f(int x) {
return (x * 2) + 1;

}

// generated from an Asp template

PyObject* map(PyObject* in) {

// code that unpacks the python array and

// applies f() to each element, returning a new array

}

// generated boost::python code for exposing the functions

BOOST_PYTHON_MODULE(module) {

boost::python::def("f", &f);

boost::python::def("map", &map);

}

Figure 5.6: Generated C++ code from DoublePlusOne using the ArithmeticMap DSEL.

generated function and the templated glue code, there is also support code that uses the Boost
Python library [1] to expose C++ functions to Python. This support code is automatically generated
by the Asp infrastructure.

Finally, all that is required is some simple top-level code that orchestrates translation and
compilation of the user-specified code, shown in Figure 5.7. The class first checks to make sure the
user defined the required f()method, then attempts to compile the specified function. If it succeeds,
the Python method is replaced by the method in the Asp module, which will run the C++ version.

Although this DSEL is relatively simple, it follows the general flow of a number of DSELs we
have implemented using the SEJITS approach and demonstrates the different pieces of functionality
Asp provides for DSEL writers. One major aspect of our DSELs that is not shown in this example
is the use of auto-tuning; in that case, instead of adding a single generated function in the top-
level code, the DSEL compiler writer adds a number of variants, each with its own program text,
optionally with functions that determine which of the variants are valid for which inputs. The Asp
infrastructure then will handle auto-tuning over the variants.

In the rest of this chapter, the components of the Asp infrastructure are specified in more detail.

5.3 Expressing Semantic Models
Asp provides a built-in DSEL for defining Semantic Models, which we used in Figure 5.3. Based
on the DSEL creator’s definition of the Semantic Model, our DSEL creates and runs Python code
that defines Python classes for each node in the Semantic Model. Within each class, automatic
type-checking code ensures that only classes matching the user’s specification can be used.

Users can also specify additional semantic checks to be inserted into the generated classes. For
example, the specification:

MyNode(args=Identifier*)

31

class ArithmeticMap(object):
def __init__(self):
make sure the method f() is defined

if not self.f:
raise Exception, "Method f() must be defined."

obtain the Python AST and try translating

try:
ast = asp.parse(self.f)

sm = ArithmeticMapSMBuilder().visit(ast)

cpp_f = ArithmeticMapCppTransformer().visit(sm)

create a new Asp module to hold the compiled function

self.module = asp.jit.AspModule()

self.module.add_function("f", cpp_f)

self.f = self.module.f

except:
if we can’t compile, we just use the interpreter as usual

print "Warning: Unable to compile instance. Using interpreted version."

pass

Figure 5.7: Top-level code for the ArithmeticMap DSEL.

assert (len(args) == 2 or len(args) == 0)

would insert the specified assert statements into the initialization code for the MyNode class. This
allows DSEL creators to easily encode checks while still benefiting from our infrastructure.

The output Semantic Model classes are subclasses of an Asp-provided node class, which ensures
they can be transformed or visited using a unified visitor class. These visitor classes mimic Python’s
built-in ast.NodeVisitor and ast.NodeTransformer classes, but extend the ability to write
visitors and transformers to Semantic Model classes as well as output ASTs. The interface for
writing such visitors is straightforward: DSEL writers create classes that subclass the correct visitor
and specify methods of the form visit <classname>(self, node). Our infrastructure then
automatically dispatches the correct method when encountering a node of a particular type. For
transformers, the method must return the replacement node; for visitors that do not transform the
Semantic Model or AST, the return type is ignored.

5.4 Code Generation
Asp provides two paths for generating code: templates (backend code with “holes” and Python
control sequences) or using Abstract Syntax Tree nodes. Currently, the two paths are not unified
in the sense that Asp does not translate from templates (or arbitrary source code) into AST nodes.
However, templates can include AST-generated code snippets. Most DSELs use combination of the
two techniques. Templates are ideal for code that remains relatively static in different computations,
such as the “outer-loops” of iterative calculations, as well as glue and utility code. The Asp template
language uses the Mako [8] syntax, which consists of backend output code as well as Python control

32

structures. This combination is actually quite powerful, and can be used for non-trivial templates.
For example, the following template code generates a fully-unrolled dot product function over two
vectors:

void dot_product(float* vec1, float* vec2, float* output) {

*output = 0.0;

% for x in xrange(vector_len):
*output += vec1[${x}] * vec2[${x}]

% endfor
}

Note that the vector length needs to be passed in at the time the template is rendered into
C++ code.

Generation using the output language ASTs is most useful when the user defines the computation;
this will be true for most DSELs of interest. Using C++ ASTs in Asp also brings some advantages:
Asp includes some built-in optimization routines (such as applying loop unrolling or blocking to an
AST) that can be used by DSEL implementers, and Asp’s unified tree transformation framework
can be used to write additional, domain-specific optimization routines. The C++ AST is based on
CodePy’s cgen library, but contains many more nodes and implements the proper protocol to allow
our tree transformation machinery to work.

A number of alternative code generation approaches were explored during the development
of Asp. We considered using the Weave framework (part of SciPy [57]), which attempts to allow
interspersing of C++ and Python code and automatically compiles the native code, while interfacing
with Python. However, Weave did not support a big enough subset of the language. Similarly,
projects such as Cython [11] enable writing C (and recently, C++) library wrappers in a Python
DSEL, but code generation is limited to translating some Python expressions into C. We also
explored using the AST implementation from libclang, the library that implements LLVM’s
Clang [69] compiler for C/C++ /Objective C. At the time we were developing Asp, the Python
bindings for the AST were very limited. Some progress has been made, but the AST implementation
is still relatively low-level and supports only C-like languages. Nevertheless, Asp could be targeted
to use libclang for C and C++ code generation and compilation; this would allow Asp to benefit
from optimizations in the LLVM toolchain, but may make it more difficult to interface with other
compilers.

In addition to ISO C++ , Asp also includes limited support for generating CUDA and OpenCL
ASTs, and Scala support is in progress as well. Table 5.1 shows the various languages and level of
support in Asp.

5.4.1 Dealing with Types
Because Python is dynamically typed while variables in our backend languages are statically typed,
during code generation it is necessary to determine the types of inputs to program text that is
being generated. Often, determining types in unnecessary, such as when the DSEL compiler only
operates on data of a particular type (for example, a matrix computation DSEL may only operate on
double-precision floating point matrices).

In cases where types must be determined, DSEL compiler writers can use run-time introspection
for finding the concrete type of data. In addition, Asp provides a trace-based type analysis that
runs the code to be transformed in the interpreter, while tracking concrete types of all left-hand

33

Language AST Support Template Support Compilers
C++ yes yes GCC, LLVM-GCC, Intel CC, clang, MSVC
Cilk Plus [55] yes yes Intel CC
CUDA [87] partial yes NVCC
OpenCL [63] partial yes Intel CC
Scala partial yes Scala 2.9

Table 5.1: Asp language support and supported compilers.

sides of assignment statements. Although this analysis only provides concrete types for a single
execution, this can be sufficiently useful for the DSEL compiler to help determine backend types for
code generation, especially when the same objects are repeatedly operated on (such as in iterative
methods).

5.5 Just-In-Time Compilation of Asp Modules
Asp provides functionality for creating functions in many languages, using many backends. Asp’s
interface for adding functions to be compiled is that the functions are contained, logically, in an
Asp module (like a Python module). Different functions in an Asp module may belong to different
backends, and the infrastructure attempts to abstract away the backends when functions are called.

Adding a function to Asp involves specifying the function text (as a rendered Asp template,
or as a backend language AST) and the appropriate backend to use for compilation. Additionally,
Asp allows specifying callback policies which control how objects and return values are returned
to Python from the compiled function. By default, Asp attempts to use Boost translators for
C++ elemental types, which automatically translate between Python types and C++ types when
passing data between the two. If C++ structures or objects are being returned, users can specify
which parts of the C++ class should be exposed, and whether Python’s garbage collection or backend
language memory management should be used.

To limit the time calling compilers (which are usually not optimized for speed), previously-
compiled code is cached. In addition, Asp compiles functions lazily, triggering backend compilation
only when a function in the backend is called, and only if function text has changed since the cached
version was created. Caching and compilation functionality is mostly provided by CodePy [65], the
support library used to build Asp’s JIT support, but we have added lazy compilation (waiting until
call-time to compile) for efficiency reasons.

One limitation of Python’s foreign function interface (FFI) is that the compiler used on the
native code accessed through the FFI must be compatible with the compiler originally used to
compile Python. On some platforms, this limits the compiler toolchains Asp can support. Table 5.1
shows the compilers and languages supported by Asp’s JIT compilation machinery.

5.6 Debugging Support
To aid DSEL compiler writers, Asp includes some basic debugging capabilities. Two kinds of
debugging are currently implemented [123]: an implementation of parallel race detection and a

34

two-level stepwise tracing, to ensure the equivalence of interpreted and generated code.
The parallel race detection is a variant of NDSeq [21], and is used to detect parallelism bugs

introduced in the optimization stage of a DSEL compiler. Our backend code generator for C++ can
be configured to automatically instrument parallel execution constructs (such as OpenMP loops)
to check for these kinds of bugs. The instrumentation checks for potential races and then records
execution, which is then fed into the NDSeq serializability checker.

The stepwise trace algorithm allows DSEL implementers to check correspondence between
the generated and pure Python code, for finding bugs in code generation. To use this, DSEL
compiler writers implement a Python interpreter for their Semantic Model, and use the debugging
infrastructure to instrument corresponding execution points between the Semantic Model and the
output code. For example, loop iterations that must be executed in some order can be instrumented
in both the Semantic Model and the output code. Then, the tool checks and reports any violations
where values differ between the two.

5.7 Auto-tuning Support
Asp provides support for auto-tuning by allowing multiple variants of a function to be created when
passing a function to Asp for compilation. In addition to each variant, DSEL implementers can pass
in functions that determine, based on properties of the inputs, whether a particular variant can run.
At call-time, a function with a number of variants is first checked to see which variants have not
yet run, then that list is filtered by which variants can run given the input, and finally, a variant is
picked. However, if all variants have been run, the fastest runnable one is always picked.

Enabling this functionality is a persistent database that records timing information for variants
run on input data; in addition to the variant, properties of the data specified by the DSEL writer are
recorded as well. Asp implements both a local database as well as support for a global database
implemented as a software service queried via RESTful HTTP calls [37]. However, this latter
functionality is not yet enabled.

There is currently no explicit support for install-time tuning, as used in libraries such as
pOSKI [56]. Install-time tuning runs many variants at install-time to determine choices at run-time;
for example, pOSKI runs many implementations of sparse matrix vector multiply at install-time,
then uses the performance numbers to choose, at run-time, based on a performance model, the right
implementation to use. Although Asp does not have explicit support for this, install-time tuning can
use the same database infrastructure and populate the performance database with relevant data at
install-time; the database interface is self-contained and simple, and as such can be easily integrated
with other packages.

Currently, the default auto-tuning search strategy uses exhaustive search without ordering. DSEL
compiler writers can override this to provide their own search strategies. Future improvements
to the search will allow DSELs to use more intelligent search algorithms, such as hill climbing,
gradient ascent, or genetic search algorithms [5].

35

5.8 Summary
Asp, our infrastructure for implementing SEJITS domain-specific compilers in Python, aims to ease
the difficulty of writing DSEL compilers that use external compilers and the language’s foreign
function interface to interact with the interpreter. This chapter demonstrates this functionality using
a simple DSEL, and outlines some of the available infrastructure for DSEL writers.

36

Chapter 6

Experimental Setup

Throughout the case studies that follow, we use three machines of varying structure to demonstrate
the portability and high performance of each of our DSELs. In this chapter, we outline the
experimental platforms and methodology for the three major case studies in the thesis. Section 6.1
describes the hardware platforms for our experiments. In Section 6.2 we describe the programming
environments on our machines. Section 6.3 outlines the performance measurement methodology of
the thesis. Section 6.4 summarizes.

6.1 Hardware Platforms
For the three major DSELs in our study, we use three different hardware platforms with quite
different characteristics. One of the machines represents workstation-class architectures while the
other two are server-class machines from Intel and AMD. Details of the three machines are shown
in Table 6.1 and discussed in the rest of this section.

Postbop is a workstation-class machine with an Intel Core i7 870 processor with four cores in a
single socket. This processor is from the Lynnfield generation of processors and is built on a 45 nm
process, with a TDP of 95 Watts. Although it is capable of using Intel’s Turbo Boost technology to
temporarily scale up processing speeds when not all cores are utilized, our test machine has this
feature disabled in order to maintain consistent benchmarking performance. Postbop has 8 GB of
memory and can achieve about 17 GB/s sustained memory bandwidth and 23.4 GFlop/s double
precision compute rate. Note, however, that the memory bandwidth figure requires using more than
one core; tests indicate a maximum single-core memory bandwidth of about 14.6 GB/s.

Boxboro represents an Intel server-class machine and contains four Intel Xeon E7 4860 pro-
cessors, codenamed Westmere-EX. Each processor contains 10 cores, for a total of 40 cores in
this machine. Built on a 32 nm process, these processors have a massive 24 MB shared L3 cache
and can sustain a measured memory bandwidth of up to 66.5 GB/s, thanks to their quad-channel
QuickPath interconnect. Peak computing rate is 181.6 GFlop/s in double precision. The TDP of
each processor is 130 Watts. For our test machine, we disable Turbo Boost in order to maintain
consistent timing measurements. This large scale machine allows us to test our codes on a large
single-node shared memory architecture. Note that the presence of four sockets, each with their
own integrated memory controllers, means that some applications will experience Non-Uniform
Memory Access (NUMA) effects, due to accessing memory that is allocated on a different socket.

37

Shared Peak Peak DP
Machine Clock Cores L2 L3 Memory Mem BW Compute
Name Processor (GHz) Socket (w/HT) (KB) (MB) (GB) (GB/s) (GFlop/s)
Postbop Intel Core i7 870 2.93 1 4 (8) 256 8 8 17.0 23.4
Boxboro Intel Xeon E7-4860 2.27 4 40 (80) 256 24 128 66.5 181.6
Hopper AMD MagnyCours 2.1 2 24 512 6 32 52.7 201.6

Table 6.1: Machines used for experiments. Peak memory bandwidth and compute rates measured
empirically using microbenchmarks. Note that Hopper’s MagnyCours architecture consists of two
six-core processors per die, each with 6 MB of shared L3 cache each.

Machine Kernel Python Compilers MPI Runtime
Postbop Ubuntu Linux 3.0.0 Ubuntu 2.7.2+ Intel CC 12.0.2 MPICH2 1.4

GCC 4.6.1
Boxboro Ubuntu Linux 3.0.0 Ubuntu 2.7.2+ Intel CC 12.1.0 MPICH2 1.4

GCC 4.6.1
Hopper Cray Linux Env 4.0 2.7.2 GCC 4.6.1 Cray

Table 6.2: Software versions used in this study.

Hopper is a large-scale Cray XE6 supercomputer at the National Energy Research Scientific
Computing Center (NERSC), run by Lawrence Berkeley National Laboratory for the Department of
Energy. Each of the 6,384 nodes contains two 12-core AMD MagnyCours processors running at 2.1
GHz, but each of these processors is made up of two separate on-die 6-core processors. Each 6-core
processor shares a 6 MB L3 cache. Each node has a measured peak memory bandwidth of 52.7
GB/s, and a compute rate of 201.6 GFlop/s. The supercomputer uses a custom Cray interconnect
and has a collective compute capability of 1.28 PFlop/s. Because of the unique node architecture,
there are four different Uniform Memory Access (UMA) domains of 6 cores each; like Boxboro,
application performance may suffer from NUMA effects.

6.2 Software Environment
This section describes the software environment on our test machines, including compilers and
parallel programming models used. Table 6.2 summarizes the software environments.

6.2.1 Compilers & Runtimes
On all the Intel machines, we use Ubuntu Linux 11.10 with the latest kernel patches; this means the
kernel is Ubuntu’s modified/patched version of the Linux 3.0.0 kernel. On all machines, we use
64-bit Operating System installs and utilize compilers that conform to the x86-64 Application Binary
Interface (ABI). On Hopper, we use Cray’s custom version of Linux, Cray Linux Environment 4.0.
This uses a heavily modified version of Linux kernel 2.6.32 with custom Cray patches to minimize
variability and reduce the amount of services running on the compute nodes.

On the Intel machines, we use Intel’s C++ compiler version 12 due to its excellent ability
to optimize code for the platform. For codes using the Message Passing Interface, however, we

38

use the default MPI compiler on the platform, which is built on Gnu Compiler Collection (GCC)
version 4.6.1. For Hopper, we use Intel’s C++ compiler for single-node tests, since it gives the
best performance when we compare installed compilers. For multi-node tests, we use Cray’s MPI
implementation built on top of GCC.

6.2.2 Parallel Programming Models
In our DSELs, we primarily use two different programming models for backend code: OpenMP
and MPI. OpenMP [89] is a set of C++ pragmas and a library for multicore parallelism on shared
memory machines. Users of OpenMP annotate their programs with pragmas that define how loops
or parallel sections should be executed. It is the primary mechanism we use for our loop parallelism
constructs. OpenMP is supported by all the compilers we use, and we use features from OpenMP
2.0.

MPI is the Message Passing Interface and is the standard programming model for high per-
formance computing applications running on multi-node machines. Although the programming
model can be used for non-SPMD (Single Program Multiple Data) parallelism, we use it strictly
in an SPMD manner; in other words, all of our MPI programs run the same program on all nodes.
Individual cores run the program with memory in their own address spaces; any communication
between cores occurs explicitly through two-sided messaging. In addition, various runtimes can
build implementation-specific optimizations for shared memory. We use MPICH2 [47] on Intel
machines and Cray’s highly optimized MPI implementation on Hopper.

6.3 Performance Measurement Methodology

6.3.1 Timing Methodology
Many of our experiments use auto-tuning, which involves running a number of variants of the same
code. In most cases, we will report the best-timed variant. All timing is done multiple times (at
least 5) and we report the mean performance, after eliminating the first run since it often incurs
first-run performance differences. For measurements where cache effects could make subsequent
runs faster than expected (due to some data still being present within the cache) we take care to
clear the cache between each timed run by running some untimed kernel that uses different data.

6.3.2 Roofline Model
When evaluating the performance results, we will employ the Roofline [119] model as an empirical
method to determine how far we are from the best possible performance. The Roofline model
is a two parameter visual model that can be used for prediction, modeling, and analysis in a
kernel-specific and machine-specific way.

The Roofline model defines operational intensity as the ratio of compute operations (often, this
is floating-point arithmetic operations) to total DRAM memory traffic. Operational intensity is
a measure of the characteristics of the execution of a kernel on a specific machine. In contrast,
compulsory operational intensity, defined as the ratio between computation operations and com-
pulsory memory traffic, is a measure of the characteristics of the kernel itself; that is, it uses the

39

minimum possible memory traffic, which is usually measured in terms of the memory size of the
data structure.

In the model, the attainable performance is defined as

performance = min{ Peak Operational Performance
Peak Bandwidth× Operational Intensity

In the first case, the kernel is said to be computation-bound, since the limit of performance
is how fast the processing units can compute results. In the second case, the kernel is memory
bandwidth bound. We can plot these two limits on the same axes and determine, based on the
operational intensity, where the expected limit of a given kernel is on a given machine. The point
where the operation computation limit and memory bandwidth lines meet is called the ridge point,
and denotes the minimum operation intensity required to attain peak computational performance.

The full Roofline model adds ceilings based on characteristics of the memory and computation
of a kernel on a machine. For example, if the floating point instruction mix is such that a given
kernel can only obtain 80% of peak floating point performance on a machine due to instruction
stalls or other issues, then that represents a lower ceiling.

Figure 6.1 show the machine rooflines for our test machines. Note that the ridge points are quite
different on the three architectures: on Postbop, an operational intensity of only 1.5 is required for
peak performance, while on Hopper the required operational intensity is nearly 4. This gives some
insight as to what kinds of algorithm implementations will attain peak computational performance,
and which will be bound by memory bandwidth. By plotting a vertical line at the operational
intensity point as well as a point representing the actual performance attained, we can gain insight as
to which type of optimizations are necessary: memory bandwidth or computational optimizations.

6.4 Summary
In this chapter, we outlined the machine and software characteristics of the three test machines we
use in our major case studies. We described the Roofline model, used to determine what fraction of
peak performance we obtain and what kinds of optimizations will bring us closer to this peak. Using
the model, we can see that the three test machines have different balance between computational
and memory traffic capabilities, and thus, we expect them to obtain different performance.

40

pe
ak

 F
P

pe
rfo

rm
an

ce
!

pe
ak

 F
P

pe
rfo

rm
an

ce
!

pe
ak

 F
P

pe
rfo

rm
an

ce
!

Fi
gu

re
6.

1:
M

ac
hi

ne
-s

pe
ci

fic
ro

ofl
in

es
fo

rt
he

th
re

e
te

st
m

ac
hi

ne
s

in
th

is
th

es
is

,s
ho

w
in

g
th

e
re

la
tio

ns
hi

p
be

tw
ee

n
pe

ak
at

ta
in

ab
le

m
em

or
y

ba
nd

w
id

th
an

d
pe

ak
do

ub
le

-p
re

ci
si

on
flo

at
in

g-
po

in
to

pe
ra

tio
n

ra
te

s.

41

Chapter 7

Overview of Case Studies

In the following chapters, we outline case studies that implement domain-specific embedded
languages using the Selective Embedded Just-In-Time Specialization (SEJITS) approach. These
DSELs are embedded in Python and utilize the Asp framework described in Chapter 5. The
different DSELs span a number of domains, and demonstrate different aspects of the approach.
Table 7.1 summarizes the case studies and the important aspects of the SEJITS approach and the
Asp framework highlighted by each. As we will see, the DSEL implementations are relatively small
in terms of lines of code, pointing to the productivity of using Asp as a base infrastructure across
the variety of domains.

In this work, we examine three major case studies of our own in two domains: a structured grid
DSEL and two DSELs for the Knowledge Discovery Toolbox (KDT) [74] graph algorithms package.
The first case, for structured grids (Chapters 8-10), demonstrates the advantages that DSELs bring
to domains where traditional high performance libraries cannot effectively optimize computation
due to the use of higher-order functions. Using the SEJITS approach, we build a DSEL that allows
users to express their computations in a high-level way yet still obtain performance that is as good
as or better than the state of the art. To do this, we use domain-specific knowledge coupled with
code generation, transformation, and auto-tuning.

The goal of the graph algorithm DSELs (Chapters 11-12) is to mitigate the performance
overheads of using a high level within KDT to allow users to productively analyze large, distributed
graphs. Without the DSELs, large overheads are incurred due to the need to cross the boundary
between native code (where the compute engine executes) and interpreted code (where user-defined
code executes). With the filter DSEL, users can perform algorithms on subsets of semantic graphs
without incurring huge overheads, and the DSEL for semiring operations allows advanced users
to write new graph algorithms in the framework without resorting to C++ . These two DSELs
demonstrate how the SEJITS approach and Asp can be used to mitigate the productivity-performance
gap for existing applications that use high level languages, in addition to showing that the SEJITS
approach can integrate well with distributed computation.

Besides these three major case studies, we summarize one other DSEL and two auto-tuned
libraries developed by others using the Asp infrastructure and the SEJITS approach (recall from
Section 4.3 that auto-tuned libraries can be seen as “trivial” DSELs from the perspective of
SEJITS). First, we examine the matrix powers implementation (Section 13.1), which applies many
optimizations using templated code to this sparse matrix kernel that is the essential building block
of communication-avoiding Krylov subspace solvers [81]. We also explore the Gaussian Mixture

42

DSEL Ch Domain Description Features Highlighted
Stencil 8-10 Structured Grid Auto-tuned DSEL for Code transformation,

Structured Grid calculations auto-tuning
KDT Filters 11-12 Graph DSEL for on-the-fly filters for Code transformation,

semantic graphs in the Knowledge distributed computation,
Discovery Toolbox integration with

existing packages
KDT 11-12 Graph DSEL for enabling new algorithms Code transformation,
Semiring by defining KDT semiring distributed computation,
Operations operations in Python integration with

existing packages
Matrix Powers 13.1 Sparse Matrix Auto-tuned implementation of the Auto-tuning, template-based
(Akx) Akx kernel for use in code generation

communication-avoiding solvers
Gaussian 13.2 Machine Auto-tuned GMM implementation Auto-tuning, template-based
Mixture Learning for GPUs and CPUs code generation, input-based
Modeling CPU/GPU selection
BLB 13.3 Machine DSEL for using the Bag of Mixing template-based code

Learning Little Bootstraps (BLB) algorithm generation and transformation,
Scala support, cloud
computing support

Table 7.1: Overview of the SEJITS case studies in this work.

Modeling (GMM) [82] implementation (Section 13.2), which also uses advanced code templates to
generate data-dependent implementations of the algorithm on multicore CPUs and GPUs, while
choosing on which platform to execute based on availability and problem parameters. Finally, we
summarize an in-progress DSEL for the Bag of Little Bootstraps [64] machine learning algorithm
(Section 13.3), which combines code templates and code transformation to execute user-provided
code in parallel. Depending on problem size and availability, a Scala-backed version using the
Spark [125] framework executes on the cloud, demonstrating the applicability of our infrastructure
to cloud computing as well as local parallelism.

With these six examples, we demonstrate that Asp and the SEJITS approach enable delivering
high performance while still programming in a high-level language. The variety of domains and
backends demonstrate the broad applicability of our approach.

43

Chapter 8

Structured Grid Computations

Structured grid computations refer to a computational pattern in which each point in a multidimen-
sional grid is updated with a function of some subset of surrounding data points. Such computations
are used in a large number of applications, across many application domains, including linear
algebra, imaging, and direct physical simulations. In this chapter, we discuss the structured grid
motif, including properties of computations in this domain, as well as optimization strategies and
performance models.

A structured grid computation is usually performed on a multidimensional grid, with a specific
function applied at each point. The surrounding points involved in the function are called neighbors,
and collectively they define the shape of the computation. In many cases, the computation is
different for the interior points than it is for boundary points, which are points that are located on
the grid’s logical boundaries and may have different computations applied depending on the specific
application.

The motif of structured grid computations is interesting in that though the applicable optimiza-
tions are well-known, how and when to apply these optimizations is not established. Structured grid
computations are challenging for auto-tuning due to the fact that the function applied at each point,
properties of the grid it is applied on, and the information at each point are all application-specific.
There has been much work in optimizing such computations, either with compiler optimizations
or with auto-tuning. Compiler optimizations suffer from needing to use heuristics and models
combined with static analysis to determine what optimizations are applicable, correct, and yield
highest performance.

Auto-tuning optimizations have generally been applied only to a single kernel instance at a time
by using text manipulation scripts to generate many variants of a kernel. This is due to the fact that
the computations are application-specific. Moreover, the optimizations themselves are dependent
on properties of the structured grid computation. This makes it impossible to package the result of
auto-tuners as a universal library.

This chapter proceeds as follows: we outline some characteristics of structured grid computations
in Section 8.1 and how they map to constructs and operations on computers, as well as data structures
in Section 8.2. Section 8.3 describes optimizations for these kinds of computations and Section 8.4
describes some performance models. Finally, Section 8.5 summarizes.

44

8.1 Characteristics of Structured Grid Computations
The structured grid motif is prevalent across many domains in computer science, and such compu-
tations differ from one another in a number of ways. In some cases, the computations represent
simulations of physical phenomena, but in other cases, the computations do not have a physical
representation. This section outlines some canonical applications of structured grid kernels, and
explores some of the characteristics of these kernels.

8.1.1 Applications
The canonical example of a mathematical structured grid operation is finding a direct solution to a
system of partial differential equations (PDEs) representing Poisson’s equation (f = 5x) using
finite differencing. In this method, called Jacobi’s method, each point on the grid represents a
quantity and is updated using a weighted average of its neighbors until convergence. For a 2D
rectangular grid, the complexity of the algorithm is O(N2) and for 3D it is O(N5/3), where N is
the total number of points in the grid. In Jacobi’s method, the structured grid computation is the
same as multiplying the vector that represents the state of the grid by the Laplacian matrix, which is
encoded by the shape and weights in the stencil.

Convergence properties of such computations can be improved in a number of ways. In
particular, two improvements to the Jacobi algorithm, Gauss-Seidel iteration and Successive Over
Relaxation (SOR), can improve the solve to O(N3/2) and O(N5/3) for 2D and 3D, respectively,
and are discussed in Section 8.3.

Mathematical solves are not the only application of structured grid algorithms. Canonical image
processing algorithms used to analyze, blur, or change the image to make it more amenable to
feature extraction all use structured grid kernels.

In the next sections, we define and characterize different parameters that specify an instance
of a structured grid calculation: dimensionality (Section 8.1.2), connectivity (Section 8.1.3), and
topology (Section 8.1.4).

8.1.2 Dimensionality
One major difference between structured grid kernels is the dimensionality of the grid, which often
corresponds to a physical dimensionality, though in some cases the physical geometry is mapped
to a higher-dimension grid when the connectivity between points is complex. Dimensionalities
of 1D to 4D are common, but higher-dimensional grids are sometimes used. Dimensionality also
influences what kinds of connectivity and topology can occur.

Figure 8.1 shows the structure of one type of grid as the dimensionality is increased, demon-
strating 1D, 2D, and 3D rectahedral grids. As is clear in the figure, dimensionality influences the
structured grid computation because it helps determine how many neighbors are present for each
point in the grid.

8.1.3 Connectivity
The connectivity of a grid describes how individual nodes in the grid are connected to other nodes.
For example, in a rectangular 2D grid, each node is connected to its four or 8 neighbors, depending

45

Figure 8.1: Left to right: 1D, 2D, and 3D rectahedral grid structures. Different dimensionalities
also influence possible connectivity. Dimensionality is one of the major ways different structured
grid kernels differ.

Figure 8.2: Left to right: rectangular, triangular, and hexagonal connectivity for 2D grids. Connec-
tivity, along with dimensionality, dictates which points are considered to be neighbors of a central
point.

on whether a neighbor is only along an axis or not. In contrast, a hexagonal grid in 2D has 6 or 12
neighbors. Clearly, in addition, the connectivity is not independent of the dimensionality, since the
possible set of neighbors is influenced by dimension.

Examples of different connectivities for the same dimensionality are shown in Figure 8.2.
Rectangular, triangular, and hexagonal grids in 2D are shown, each with a differing number of
neighbors. In addition, another factor in determining connectivity is whether the values are taken to
be cell-centered, edge-centered, or node-centered. Examples of the three for a hexagonal 2D grid
are shown in Figure 8.3. Depending on the structured grid application, one or more of these may be
used in different kernels, and the translation between the different types may require an application
of a kernel that determines one kind of value from the other. For example, flow quantities may be
most naturally expressed at edges, while the quantity under study exists at the center.

46

Figure 8.3: Left to right: cell-centered, node-centered, and edge-centered value locations for
hexagonal 2D grids.

Figure 8.4: Example topologies for structured grids. Left: a 2D toroidal grid, with “end” connec-
tions shown with gray dotted lines. Right: a square pyramidal 3D grid, which consists of “layers”
of triangular surfaces.

8.1.4 Topology
The topology of a grid refers to the combination of dimensionality, connectivity, and borders. For
example, for a linear grid in one dimension, it is possible either have a 1D linear topology, or the
ends can be connected together to form a torus. Similarly, a 2D torus and a 2D rectangle may both
have rectangular connectivity, but differ in how the edges connect or do not connect to each other.

Figure 8.4 shows two example topologies. On the left is a 2D toroidal grid, with both edges
connecting to the points on the other side, resulting in each point in the grid having exactly the
same number of neighbors. The right part of the figure shows a 3D square pyramidal grid, which
consists of triangular surfaces connected to the upper and lower surfaces; as a result, each cell has
five axis-centered neighbors. Alternatively, a 3D tetrahedral grid would have all surfaces being
triangles, resulting in fewer neighbors for each cell.

So far, we have only examined grids with a regular structure. Often, due to modeling physical
phenomena, the grids will be a composition of two or more kinds of topologies, resulting in disparate
regions where the connectivity and neighbors differ. For example, a rectangular and triangular

47

grid may be composed by joining two grids. Such topologies require complicated mathematics to
ensure that the boundaries correctly transfer and preserve physical quantities, and structured grid
computations on these kinds of data structures may require different kernels for the two regions as
well as an additional kernel for the boundary calculation.

8.2 Computational Characteristics
In this section, we examine how the characteristics of structured grid algorithms map onto data
structures and computations on actual computer hardware. We will restrict most of the discussion to
Jacobi-like structured grid kernels, where the output grid is distinct from input grid(s) to the kernel,
and, for clarity, describe the straightforward computation only. A simple example of a structured
grid calculation in C++ is shown in Figure 8.5 and demonstrates many computational aspects of
such kernels. Optimizations are covered in Section 8.3.

void kernel(double* in_grid, double* out_grid, int nx, int ny) {
// use a macro for index calculation

#define Index2D(_i,_j) (_i+nx*_j)

// do the interior only

for (int i=1; i<nx-1; i++)
for (int j=1; j<ny-1; j++)
out_grid[Index2D(i,j)] += 0.25 * (in_grid[Index2D(i+1,j)]

+ in_grid[Index2D(i-1,j)]

+ in_grid[Index2D(i,j+1)]

+ in_grid[Index2D(i,j-1)]);

}

Figure 8.5: Simple 2D structured grid kernel in C++ . Note that the data is stored as flat 1D arrays,
even though the computation is on a 2D structured grid.

8.2.1 Data Structures
In general, many data items may be stored at each point in a grid, but for structured grid algorithms
the number of data items (and hence the size of memory used) is constant per point. The data stored
at each point may be a scalar value, a vector, or some larger data structure.

In the case of a simple scalar per point, a multidimensional grid is usually allocated as a single
contiguous chunk of memory and indexed using integer offsets. In Fortran and languages that use
Fortran-like storage, this is a simple multidimensional Fortran array, accessed using grid(i,j) for
the i, j entry in a 2D grid, for example. In C, however, the lack of efficient multidimensional arrays
results in the data structure usually being a single-dimensional C array that is then accessed using
macro expansion or other indexing methods to calculate the offset from the base pointer. If the grid
were instead implemented using C multidimensional arrays, multiple accesses to memory would
be required, since a C multidimensional internally is a set of pointers to other pointers. Figure 8.6
shows the logical view, memory view, and indexing for C and Fortran for a simple 2D grid that
stores scalar values.

48

j"

i"

9"items"

start" Fortran"
"grid(2,3)"

"
C"

"grid[1+2*4]"

Figure 8.6: Left: Logical view of a 2D grid that holds scalar values, with a point highlighted in red.
Center: View from the perspective of memory for the highlighted red location. Note that in memory,
the grid is simply a flat 1D memory array. Right: Accessing the highlighted point in Fortran and
C. Although C supports multidimensional arrays, the implementation is inefficient due to the large
amount of “pointer chasing” incurred. Thus, structured grid computations usually mimic the Fortran
model of multidimensional arrays by creating a flat 1D array and explicitly calculating offsets.

For grids that contain a vector or some larger set of values per point, two different implemen-
tations may be used. The most straightforward is to create an array similar to that in the scalar
case, but where each item in the array is a C struct instead of a built-in datatype; this is called
an array of structures. However, depending on the kernels performed on the grid, it is often more
efficient to separate out the data items into separate arrays; for example, a grid of 3D vectors may
be represented by three different arrays, one for each of the three components. Such a layout is
called a structure of arrays. Both layouts for grids are common in structured grid computations, and
each has possible tradeoffs in terms of ease-of-use and performance, depending on the kernels used.

8.2.2 Interior Computation & Boundary Conditions
In many structured grid algorithms, computation is divided into interior and boundary regions,
because the operator applied to the interior can be done without dealing with special values or
restrictions that occur at the boundary. Boundary values often require different computation
structure, whether to match a physical restriction or to ensure mathematical correctness. Thus, the
computation is often decomposed into two steps, so, on a grid G,

x = finterior(x, neighbors(x)) ∀x ∈ interior(G)
x = fboundary(x, neighbors(x)) ∀x ∈ boundary(G)

are done separately. Rarely, the boundary computations can be inserted into the same iterations as
the interior computation, as in the case for periodic boundaries.

Common boundary conditions used in structured grid computations are fixed, periodic (corre-
sponding to say, a torus or ring), and other types, which are generally implemented through the use
of ghost zones. Fixed (also known as constant) boundaries are the simplest and most common. In
this case, the boundary values are set before the structured grid computation and are never updated
with new values.

49

Periodic boundaries occur when the logical connectivity of nodes at the boundaries are such that
they connect to the other end. These can often be done along with the interior during a sweep of the
grid, at the cost of having to use a integer modulus operator to ensure that values wrap around from
the largest index back to the smallest in each dimension. The 2D toroidal grid in Figure 8.4 is an
example where periodic boundaries occur.

Finally, some structured grid computations require more complex boundary calculations, in-
cluding when the boundary must be recalculated before each sweep of the grid, or when the grid
consists of two parts with different structures connected through a common boundary. Another
common operation at the boundaries is to fill in data from remote computations when running a
structured grid kernel in parallel. In many of these cases, the boundaries are implemented as ghost
zones that are filled in via communication or computation that occurs outside the structured grid
kernel. Ghost zones refer to cells that are not considered part of the interior of the grid and are not
updated during a sweep, but are used as inputs to points on the edges of the grid.

8.2.3 Memory Traffic
Multidimensional structured grid calculations exercise the memory hierarchy in interesting ways,
and many structured grid kernels are constrained in performance by the available memory bandwidth.
In streaming through a grid, there is usually some spatial locality, but it may be difficult for the
memory system to see it. One issue is that the spatial locality is difficult for the memory system
to discern due to the way data is laid out in memory: accessing a 1D array using 3D addressing
can prevent spatial locality from being obvious to the memory subsystem. As a result, unnecessary
cache misses are often incurred in naı̈vely-structured implementations of structured grid kernels.

Prefetching engines are mechanisms in the memory hierarchy that track recently-loaded cache
line locations and attempt to discern patterns from them and use these patterns to prefetch data
from memory before it is requested by an explicit load. Prefetchers can eliminate the latency of
waiting for a memory fetch to occur, but the typical memory layout of grids means the prefetchers
must be intelligent enough to discern strided memory access patterns— consecutive points do not
necessarily correspond to consecutive memory locations, for all but one of the dimensions in a
multidimensional grid. On some architectures, these access patterns can confuse the prefetchers and
prevent them from working effectively or even slow down the overall computation due to incurring
unnecessary memory traffic if they fetch data that will not be used.

Some structured grid kernels require lookups into a table based on some function of values, or
based on some function of the point locations to determine the coefficients to apply in the kernel.
The first case is analogous to having different matrix values in a sparse matrix vector multiplication.
The second one is sometimes used for non-rectangular connectivities, but can complicate the kernel
in a way that is not amenable to high performance. Both uses of a lookup introduce memory latency
delays into the function applied at every point; such latency can greatly increase processor stalls, as
well as preventing vectorization (by hand or by the compiler), further impacting performance.

8.3 Optimizations
Depending on the particular kernel, structured grid computations are amenable to a wide variety of
optimizations, some of which are suited for the case where the overall computation is bound by

50

Figure 8.7: Left: Jacobi method on a 2D grid. The blue points of the input grid are inputs into the
function that determines the output red point in the output grid. Note that all the blue points have
“old” values (denoted by gray). Right: Gauss-Seidel method on a 2D grid. The same grid is used for
input and output, so, as a result, some of the input blue points have old data and some have new
data. The central point is used as both input and output.

Figure 8.8: The restriction and prolongation operators used in multigrid, both of which are
implemented as structured grid kernels. Left: Restriction operator on a 2D grid. Points in the
coarser grid depend on fine grid points, with some kind of weighted averaging used in the translation.
Right: Prolongation operator. Another set of weighted averages translates data from the coarse grid
to the finer one.

memory bandwidth performance, and others for the case when it is bound by computation. This
section outlines some of the optimization strategies prevalent for these kinds of computations.

8.3.1 Algorithmic Optimizations
Optimizations that change the algorithm (as opposed to just changing the implementation) can
result in large performance improvements. The Gauss-Seidel method for structured grid algorithms,
originally applied to solvers, uses a single grid for both input and output. Figure 8.7 compares
the Jacobi and Gauss-Seidel methods. Since some of the values in the Gauss-Seidel method are
new values, the propagation of information is faster, which results in faster convergence. For 2D,
the convergence is improved to O(N3/2) and similar speedups apply for other dimensionalities.
However, the algorithm introduces dependencies between points, making parallelization difficult
or impossible. A further improvement, called Successive Over Relaxation (SOR), weights the
structured grid coefficients in a way that improves convergence without creating difficulties for
parallelization.

Structured grid kernels are also the basis for another method of solving PDEs, called the multigrid
method [18]. In a multigrid calculation, the values in the grid are restricted (i.e. represented by fewer
points) and the computation is done on this coarser grid. Subsequent steps perform prolongation on
the values to use more points to represent the grid, then do the computation on these finer grids.
In this manner, convergence is improved to O(N). The prolongation, restriction, and computation

51

J

K

K
K−1

TI

TJ

I

K+1

Figure 8.9: 2D blocking of a 3D structured grid problem. In this figure, K is the least-contiguous
dimension in terms of memory layout. Rivera blocking only blocks in the other two dimensions
(with blocking factors of TI and TJ), to prevent the tiny block sizes that result from a full 3D
blocking.

steps are all implemented using structured grid kernels. Figure 8.8 shows a simplified example of
restriction and prolongation for a 2D grid.

Adaptive Mesh Refinement [13] is a more advanced structure for such problems that uses
insights from the multigrid method. It attempts to automatically decide on mesh fineness in regions
that need more resolution, instead of increasing the fineness for the entire problem space, which
can degrade performance substantially. The algorithm is too complicated to outline here, but can
perform computations with accuracy that is not obtainable otherwise due to memory constraints. At
its heart, the AMR method also uses structured grid kernels.

8.3.2 Cache and TLB Blocking
The cache blocking optimization attempts to eliminate cache capacity and conflict misses by
operating on chunks of data at a time, and has been applied to a variety of motifs and codes [121].
Cache blocking can substantially improve performance for portions of code that are bound by
memory bandwidth performance. In structured grid calculations, cache blocking is usually done not
by changing the data structure, as is the case in other motifs, but by altering the traversal order to
expose spatial and temporal locality.

Cache blocking has been applied to structured grid algorithms in much previous work [101, 122].
For 3D and higher dimensionalities, Rivera et al demonstrated that blocking in all the dimensions

52

results in relatively small blocks (since the block must fit in a fixed-size cache) that do not effectively
increase performance. As a result, they suggested 2D blocks for higher-dimensional grids, as shown
in Figure 8.9. Such blocking schemes ignore the most-significant dimensions and perform blocking
in 2D slices of the least-significant dimensions.

In addition, our previous work [60, 61] showed that it is important to think about unit-stride
accesses when cache blocking because overall performance is dependent on prefetching engines in
the memory hierarchy that are ineffective when long streams of unit-stride access do not occur. In
addition, our empirical data showed that, for serial structured grid implementations, it is usually not
advantageous to enable cache blocking in the least unit-stride dimension. The model used for this
work is outlined in more detail in Section 8.4.

In parallel implementations on multicore machines, cache blocking occurs automatically if
dividing up the grid in the correct manner. In other words, the standard parallelization schemes
divide the grid into cache blocks and then distribute those cache blocks over the available processors.
Additional levels of blocking for lower-level caches can be useful as well, in addition to ensuring
the distribution of blocks respects the machine hierarchy.

Cache blocking can be done explicitly via loop transformations if given a blocking factor; the
nested loops that implement a structured grid kernel are transformed using strip mining and loop
interchange. Alternatively, cache blocking can be done using cache-oblivious algorithms [40], which
use recursion to repeatedly subdivide the iteration space. However, cache-oblivious algorithms
usually need to have some cache awareness [61] as to when to stop recursion; otherwise, the
recursive function call overhead can incur more overhead than the time saved using the blocking.
Both methods can minimize cache misses to near the theoretical minimum.

For compilers to optimize explicit loop-based traversals, the polyhedral model [122] is one
approach. It uses the loop bounds and dependencies to define a polyhedron representing the iteration
space along with restrictions on traversal order. Based on this representation, the approach uses
heuristics to determine how to minimize memory traffic. In practice, it is difficult to automatically
create the optimal version, but the polyhedral model represents a promising way to automatically
optimize nested loops without relying on domain-specific knowledge.

8.3.3 Vectorization
For computation-bound kernels, vectorization is important to fully-utilize available computation
capabilities and obtain maximum performance. Compilers must ensure the absence of pointer
aliasing to determine vectorizability in structured grid kernels, but code is often expressed in ways
that are not amenable to the needed compiler analyses (for example, the structured grid kernel
function may use pointers as inputs, and determining that these pointers point to non-overlapping
regions of memory requires full-program information). In other cases, the vectorizability is not
apparent unless the iteration order is changed or common subexpression elimination is performed.
Other kinds of kernels contain indirect accesses to grids or lookup tables, which correspond to
scatter/gather patterns on vectors. Most SIMD instruction sets do not yet support this kind of
vectorization, limiting the effectiveness of automatic vectorization for structured grid kernels.

53

space

ti
m

e dx0

t1

x0

t0

x1

dx1
T1 T2

space

ti
m

e dx0

t1

x0

t0

x1

dx1
T2

T1

Figure 8.10: The serial cache-oblivious algorithm divides up space-time using recursive cuts. Left:
a space cut in 1D space respects dependencies, so the space is cut at an angle relative to time. Right:
a time cut can enable further recursive space cuts.

Figure 8.11: Time skewing for a 1D space stencil in 2D space-time. Same colored points represent
blocks, where the blocksize is C. Blue arrows show, for two of the points, what points in the
previous timestep they depend on. Note that some points depend on points in other blocks. Figure
courtesy Kaushik Datta.

8.3.4 Locality Across Grid Sweeps
When the same kernel is applied repeatedly to a grid, which often occurs in iterative solver
algorithms, it is sometimes possible to block in both space and time, that is, to operate on the same
cache-sized block of data for several iterations at a time. This potentially eliminates capacity misses
incurred by repeated sweeps, and can drastically reduce the required memory traffic for multi-step
algorithms. However, it is sometimes non-trivial to change the computation order in this manner,
due to dependencies between points both in space and time.

Blocking across multiple timesteps is the central insight that leads to time skewing [122]
optimizations as well as the cache-oblivious algorithm [40], both of which perform blocking in the
time and space dimensions. Figure 8.11 shows the time skewing optimization applied to a 1D kernel.
Here, the blocks are in both space and time, with a space of C. Notice that some points depend
on points in other blocks; however, if the computation proceeds serially, each point is updated for
as many timesteps as the whole calculation requires before moving to the next block. Similarly,
the cache-oblivious algorithm shown in Figure 8.10 uses blockings in space and time, but instead

54

of explicit block sizes, it uses recursion to decrease blocks until they fit into cache. This recursion
proceeds by trying to first cut in space (which reduces cache traffic) but, if the cut would yield a
degenerate block, it proceeds to cut in time. Although the two algorithms are based on a similar
principle, the performance characteristics can be quite different because time skewing is more
amenable to compiler optimization and avoids overhead due to recursion [31].

8.3.5 Communication Avoiding Algorithms
Communication-avoiding algorithms use redundant work or other strategies to limit the amount of
inter-unit communication in a parallel algorithm and communication between parts of the memory
hierarchy in a serial computation.

The communication-avoiding matrix powers (orAkx) algorithm [51] builds a basis {x,Ax,A2x, ..., Akx}
and is used in communication-avoiding Krylov Subspace Methods (KSMs) for solving systems of
linear equations. The optimizations used in the algorithm are amenable to applying to multi-timestep
structured grid algorithms. Conceptually, the communication avoiding optimizations in the struc-
tured grid context can be thought of as enhancements to space-time blocking. Instead of ensuring
the blocked calculation proceeds in a way that respects point dependencies, the communication-
avoiding strategy is to instead either perform redundant work (each block computes, from the first
timestep, all points on which its values depend) or pre-compute and then communicate the pieces
on which other blocks depend. In either case, the need for synchronization between the blocks is
removed, allowing the calculations to proceed without repeated communications.

8.3.6 Parallelization
Structured grid calculations are amenable to both single-node (multicore) and multi-node (dis-
tributed) parallelism. In the single-node shared memory case, each hardware context is assigned
a subset of the grid to operate on, possibly requiring (implicit) inter-thread communication for
ghost zone data and for barriers to ensure correctness. In the distributed-memory case, explicit
ghost zones that overlap between communicating nodes are used to ensure all the data required is
present. Between iterations, explicit communication is required to send the values in ghost zones
to appropriate processors. Parallelization can potentially speed up the computation by a factor of
P if the kernel is compute-bound. For memory-bandwidth bound kernels, parallelization can help
maximize obtained memory bandwidth.

Other optimizations may influence the parallelization strategy. For example, if cache blocking
is employed, the parallelization must be aware of this blocking in order to obtain best performance.
Similarly, the communication avoiding algorithms are different in serial and in parallel, with different
goals. Thus, parallelization cannot necessarily be applied independently of other optimizations.

8.3.7 Summary of Optimizations
This section has described some optimization strategies and issues for structured grid computations.
There is a long history of applying these optimizations to individual kernels and applications, with
varying effectiveness. However, applying them generally is difficult due to their dependence on
aspects of the individual computational kernel’s properties, such as the footprint of the computation

55

Optimization Depends on
Algorithmic Opts Problem domain
Cache/TLB Blocking Grid size, footprint, cache size,

parallelization
Vectorization Footprint, computational characteristics,

machine vector length
Time blocking Grid size, cache size, footprint, boundary

conditions, parallelization
Communication avoiding Grid size, cache size, footprint, boundary

conditions, parallelization
Parallelization Blockings, machine HW parallelism

Table 8.1: Summary of optimization strategies and what aspects of the computation influences how
and if they are applicable to a particular problem.

and the dimensionality. Table 8.1 summarizes the optimizations in this section as well as what
aspects of the computation influence their applicability.

8.4 Modeling Performance of Structured Grid Algorithms
Structured grid algorithms have been extensively studied and their performance modeled. In this
section, we describe a model for serial memory-bound structured grid algorithms, then describe
further refinements to this model for parallel implementations. Finally, we derive an empirical
roofline model for structured grid algorithms, which is applicable to both memory-bound and
computation-bound kernels, and is the model used in this work.

8.4.1 Serial Performance Models
In previous work [60], we created a serial performance model for memory-bound structured grid
computations. Specific to the Rivera cache blocking optimizations on modern architectures de-
scribed previously, this memory model hinged on the insight that ensuring prefetching performance
as well as reducing capacity misses was an important consideration when optimizing. The predictive
model uses a proxy microbenchmark called Stanza Triad, which is similar to the STREAM [76]
benchmark. However, Stanza Triad performs triad operations on stanzas (consecutive memory
locations of fixed size) and then jumps forward in memory; this access pattern mimics how blocking
changes the addresses the memory hierarchy sees. Modeling performance of Stanza Triad requires
a three-point model for performance for the first cache line in a stanza, the second line, and the
rest of the data in the stanza, in increasing performance order. Figure 8.12 shows the modeled and
actual performance of the microbenchmark on three different architectures.

Based on this model of prefetcher performance, we construct a model for the performance of
a blocked structured grid kernel using the same three-point regime and taking into account how
many of each type of access occurs in the blocked algorithm to obtain upper and lower bounds
on performance. Figure 8.13 demonstrates our model for a heat equation solver on a 5123 grid on

56

STriad Bandwidth (2nd Model vs. Actual)

G
B

/s
ec

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Stanza Length (words)
16 32 64 128 256 512 1k 2k 4k 8k 16k

Itanium2 Actual

Itanium2 Model

Opteron Actual

Opteron Model

G5 Actual

G5 Model

Figure 8.12: Stanza Triad performance and model for three architectures. The benchmark is
similar to STREAM, but does “stanzas” of triads before jumping to a new location in memory. This
mimics access patterns in structured grid kernels. To model obtained memory bandwidth, we use a
three parameter model that separates the first cache line of a stanza, the second, and the rest of the
cache lines into three different performance regimes, due to prefetcher performance. Observed and
modeled data match well.

a single-core AMD Opteron machine that predicts performance well. In addition, we can apply
the model to determine when blocking optimizations will help for the serial algorithm, based on
cache size, grid dimensions, and grid dimensionality. Figure 8.14 shows our model for 2D and 3D
computations.

In more recent studies, others have created parallel blocking performance models based on
this work [30, 29]. Although these are mixed for how well they predict actual performance, they
can provide insight into areas of the parameter space for blocking that are unlikely to yield good
performance as well as outlining parameter regions likely to yield high performance. Such insights
can be useful for auto-tuning.

8.4.2 Roofline Model for Structured Grid
Figure 8.15 shows an example roofline [119] model of a structured grid calculation. To calculate the
empirical roofline performance bounds for structured grid kernels, as usual we first create ceilings
corresponding to the machine peak memory bandwidth (usually obtained using the STREAM
microbenchmark) and the machine’s theoretical performance; for most structured grid algorithms,
this is the peak floating point operations per second, although depending on the operation used
inside the kernel, it may be integer operations or some other computation.

57

Rivera Cache Blocking Model (Opteron @ 512)

8
x

8
16

 x
 8

32
 x

 8
64

 x
 8

12
8

x
8

25
6

x
8

51
2

x
8

8
x

16
16

 x
 1

6
32

 x
 1

6
64

 x
 1

6
12

8
x

16
25

6
x

16
51

2
x

16
8

x
32

16
 x

 3
2

32
 x

 3
2

64
 x

 3
2

12
8

x
32

25
6

x
32

51
2

x
32

8
x

64
16

 x
 6

4
32

 x
 6

4
64

 x
 6

4
12

8
x

64
25

6
x

64
51

2
x

64
8

x
12

8
16

 x
 1

28
32

 x
 1

28
64

 x
 1

28
12

8
x

12
8

25
6

x
12

8
51

2
x

12
8

8
x

25
6

16
 x

 2
56

32
 x

 2
56

64
 x

 2
56

12
8

x
25

6
25

6
x

25
6

51
2

x
25

6
8

x
51

2
16

 x
 5

12
32

 x
 5

12
64

 x
 5

12
12

8
x

51
2

25
6

x
51

2
51

2
x

51
2

T
im

e
(s

ec
)

0

1

2

3

4

5

6

7

8

lower bound upper bound actual best

Figure 8.13: Modeled and observed performance for a Laplacian (heat equation) structured
grid problem (grid size 5123) on an AMD Opteron machine, using 2D blocking for optimization.
Observed speedups match well our analytic upper and lower bounds based on the Stanza Triad
microbenchmark.

We must also create a new ceiling for the bandwidth by crafting a microbenchmark that has the
same mix of read and write streams as the kernel under study, since the number and mix of memory
streams often changes the obtainable bandwidth due to peculiarities of the memory hierarchy.
Furthermore, because structured grid kernels often contain operations that are not straightforward
to vectorize, we calculate a new computation ceiling based on in-cache performance of the kernel;
this gives a more realistic bound on computation performance given the mix of instructions in the
innermost loops. These two ceilings represent tighter limits on obtainable performance for a given
structured grid kernel.

Finally, we plot the kernel using a vertical line at the kernel’s operational intensity, defined as the
ratio of operations to bytes of memory used. This vertical line tells us whether the kernel is bound
by memory hierarchy performance or whether it is bound by in-core computation performance. The
red and blue dotted lines in Figure 8.15 are examples of memory bandwidth and computation bound
kernels, respectively. Note that until operational intensity is high enough, the kernel will be bound
by memory bandwidth performance, which is the case for many structured grid kernels.

The models in this section are useful even when employing auto-tuning. In fact, the models
themselves may not exactly predict performance, but are better used as tools to understand what
kinds of optimizations may improve performance. In the context of auto-tuning, they can also be
used for two purposes: first, to determine whether the achieved performance of a particular version
is “good enough” relative to the expected peak performance; and second, to help reduce the size of

58

2MB 8MB 32MB 128MB 512MB 2GB 8GB 32GB 128GB

2KB

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

1MB

2MB

4MB

8MB

16MB

32MB

64MB

128MB

Main Memory Size

O
n

-C
h

ip
 C

ac
h

e
Si

ze

Cache Size Bound for Effective Tiling

Max $ for 2D
Max $ for 3D
Itanium2
Opteron
Power5
Pentium2
PowerPC G5
Cell SPE

1283 2563 5123

Potential speed up

from cache blocking

for 2D or 3D stencils

No potential speed

up from cache

blocking

Potential speed

up from cache

blocking for 3D

stencils only

Figure 8.14: Based on cache size and grid dimensions, we can determine whether it will be useful
to enable cache blocking, based on our performance model for serial structured grid algorithms.

the search space by eliminating parameter sets that will perform poorly.

8.5 Summary
In this chapter, we explored the various aspects of structured grid computations that make them
difficult to encapsulate in a traditional optimized library. Though conceptually simple, computations
in this motif vary highly from application to application, and these differences greatly influence the
possible optimizations as well as the manner in which these optimizations are applied. In addition,
these optimizations influence one another, making traditional code generation approaches such
as auto-tuned libraries more difficult. Finally, we defined some metrics to model the bottlenecks
of structured grid computations, and outlined how we can use the roofline model to guide our
auto-tuning and evaluate its effectiveness.

59

Operational Intensity (Op/Byte)!

O
ps

/S
ec
!

Peak Ops/Sec!

In-Cache Limit!

Kernel 2!Kernel 1!

Figure 8.15: Example Roofline model for structured grid calculations. The memory bandwidth and
operation rate are plotted using standard microbenchmarks such as STREAM and Linpack. Because
different mixes of read/write streams change obtainable bandwidth, further microbenchmarks may
be required to find obtainable memory bandwidth. Similarly, the particular mix of operations may
result in a lower ceiling than peak operations per second; this bound can be found by running
in-cache versions of a kernel. Kernel 1 here is memory bound due to its low operational intensity,
while Kernel 2 is bound by computation.

60

Chapter 9

An Auto-tuner for Parallel Multicore
Structured Grid Computations

This chapter describes a proof-of-concept of a generalized auto-tuning approach, which uses a
domain-specific transformation and code-generation framework combined with a fully-automated
search to replace structured grid kernels written in Fortran with their optimized versions. The
interaction with the application program begins with simple annotation of the loops targeted for
optimization. The search system then extracts each designated loop and builds a test harness
for that particular kernel instantiation; the test harness simply calls the kernel with random data
populating the grids and measures performance. Next, the search system uses the transformation
and generation framework to apply our suite of auto-tuning optimizations, running the test harness
for each candidate implementation to determine optimal performance. After the search is complete,
the optimized implementation is built into an application-specific library that is called in place of
the original.

The proof-of-concept framework described in this section forms the basis of the embedded DSL
in Chapter 10, which expresses more general structured grid computations and is more formally
specified, as well as being embedded in a high-level language. In addition, the performance
results in Section 9.5 demonstrate the viability of manipulating structured grid code with tree-
based optimizations and then auto-tuning over the generated variants to produce high performance
implementations. The compiler for the structured grid DSEL in Chapter 10 follows this approach.

We begin this chapter by describing the architectures and kernels under study in Section 9.1
and the auto-tuning framework in Section 9.2. Optimizations and code generation strategies the
auto-tuner uses are described in Sections 9.3 and 9.4. Section 9.5 analyzes the performance obtained
by the tuner. Section 9.6 describes some limitations of the proof-of-concept system in this chapter,
and Section 9.7 summarizes.

9.1 Structured Grids Kernels & Architectures
This proof-of-concept auto-tuner is used to explore the potential of whether code transforma-
tion/generation is a viable path to automatically obtaining high performance for structured grid
kernels. Thus, we restrict our tuner to just a few kernels to simplify this exploration. Architectures
used in this chapter differ from those in the rest of the thesis, so we will describe them in this

61

C
ac

he
Fl

op
s

C
om

pu
ls

or
y

W
ri

te
C

ap
ac

ity
N

aı̈
ve

Tu
ne

d
E

xp
ec

te
d

R
ef

er
en

ce
s

pe
r

R
ea

d
W

ri
te

ba
ck

A
llo

ca
te

M
is

s
A

ri
th

m
et

ic
A

ri
th

m
et

ic
A

ut
o-

tu
ni

ng
K

er
ne

l
(d

ou
bl

es
)

St
en

ci
l

Tr
af

fic
Tr

af
fic

Tr
af

fic
Tr

af
fic

In
te

ns
ity

In
te

ns
ity

B
en

efi
t

L
ap

la
ci

an
8

8
8

B
yt

es
8

B
yt

es
8

B
yt

es
16

B
yt

es
0.

20
0.

33
1.

66
×

D
iv

er
ge

nc
e

7
8

24
B

yt
es

8
B

yt
es

8
B

yt
es

16
B

yt
es

0.
14

0.
20

1.
40
×

G
ra

di
en

t
9

6
8

B
yt

es
24

B
yt

es
24

B
yt

es
16

B
yt

es
0.

08
0.

11
1.

28
×

Ta
bl

e
9.

1:
St

ru
ct

ur
ed

gr
id

ke
rn

el
ch

ar
ac

te
ri

st
ic

s.
A

ri
th

m
et

ic
In

te
ns

ity
is

de
fin

ed
as

th
e

To
ta

lF
lo

ps
/T

ot
al

D
R

A
M

by
te

s.
C

ap
ac

ity
m

is
se

s
re

pr
es

en
ta

re
as

on
ab

le
es

tim
at

e
fo

rc
ac

he
-b

as
ed

su
pe

rs
ca

la
rp

ro
ce

ss
or

s.
A

ut
o-

tu
ni

ng
be

ne
fit

is
a

re
as

on
ab

le
es

tim
at

e
ba

se
d

on
th

e
im

pr
ov

em
en

ti
n

ar
ith

m
et

ic
in

te
ns

ity
as

su
m

in
g

a
m

em
or

y
bo

un
d

ke
rn

el
w

ith
ou

tc
on

fli
ct

m
is

se
s.

62

x
y

z

x
y

z

x
y

z

d
o

k
=
2
,
n
z
-
1
,
1

d
o

j
=
2
,
n
y
-
1
,
1

d
o

i
=
2
,
n
x
-
1
,
1

u
N
e
x
t
(
i
,
j
,
k
)
=

a
l
p
h
a
*
u
(
i
,
j
,
k
)
+

b
e
t
a
*
(
u
(
i
+
1
,
j
,
k
)
+
u
(
i
-
1
,
j
,
k
)
+

u
(
i
,
j
+
1
,
k
)
+
u
(
i
,
j
-
1
,
k
)
+

u
(
i
,
j
,
k
+
1
)
+
u
(
i
,
j
,
k
-
1
)

)

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

d
o

k
=
2
,
n
z
-
1
,
1

d
o

j
=
2
,
n
y
-
1
,
1

d
o

i
=
2
,
n
x
-
1
,
1

u
(
i
,
j
,
k
)
=

a
l
p
h
a
*
(

x
(
i
+
1
,
j
,
k
)
-
x
(
i
-
1
,
j
,
k
)

)
+

b
e
t
a
*
(

y
(
i
,
j
+
1
,
k
)
-
y
(
i
,
j
-
1
,
k
)

)
+

g
a
m
m
a
*
(

z
(
i
,
j
,
k
+
1
)
-
z
(
i
,
j
,
k
-
1
)

)

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

d
o

k
=
2
,
n
z
-
1
,
1

d
o

j
=
2
,
n
y
-
1
,
1

d
o

i
=
2
,
n
x
-
1
,
1

x
(
i
,
j
,
k
)
=
a
l
p
h
a
*
(

u
(
i
+
1
,
j
,
k
)
-
u
(
i
-
1
,
j
,
k
)

)

y
(
i
,
j
,
k
)
=

b
e
t
a
*
(

u
(
i
,
j
+
1
,
k
)
-
u
(
i
,
j
-
1
,
k
)

)

z
(
i
,
j
,
k
)
=
g
a
m
m
a
*
(

u
(
i
,
j
,
k
+
1
)
-
u
(
i
,
j
,
k
-
1
)

)

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

xy
 p

ro
du

ct

re
ad

_a
rr

ay
[]

[]

x
di

m
en

si
on

w
ri

te
_a

rr
ay

[]

xy
 p

ro
du

ct

w
ri

te
_a

rr
ay

[]
[]

x
di

m
en

si
on

re

ad
_a

rr
ay

[]

xy
 p

ro
du

ct

w
ri

te
_a

rr
ay

[]

x
di

m
en

si
on

re

ad
_a

rr
ay

[]

x y z u

x y z u

u’
 u

(a
)

(b
)

(c
)

Fi
gu

re
9.

1:
(a

)L
ap

la
ci

an
,(

b)
di

ve
rg

en
ce

,a
nd

(c
)g

ra
di

en
tk

er
ne

ls
.T

op
:3

D
vi

su
al

iz
at

io
n

of
th

e
ne

ar
es

tn
ei

gh
bo

rs
tru

ct
ur

ed
gr

id
op

er
at

or
.

M
id

dl
e:

co
de

as
pa

ss
ed

to
th

e
pa

rs
er

.B
ot

to
m

:m
em

or
y

ac
ce

ss
pa

tte
rn

as
th

e
ke

rn
el

sw
ee

ps
fr

om
le

ft
to

ri
gh

t.
N

ot
e:

th
e

co
lo

rr
ep

re
se

nt
s

ca
rt

es
ia

n
co

m
po

ne
nt

s
of

th
e

ve
ct

or
fie

ld
s

(s
ca

la
rfi

el
ds

ar
e

gr
ay

).
Fi

gu
re

co
ur

te
sy

of
Sa

m
W

ill
ia

m
s.

63

Core AMD Intel Sun Nvidia
Architecture Barcelona Nehalem Niagara2 GT200 SM

superscalar superscalar HW multithread HW multithread
Type out of order out of order dual issue SIMD

Clock (GHz) 2.30 2.66 1.16 1.3
DP GFlop/s 9.2 10.7 1.16 2.6
Local-Store — — — 16KB∗∗

L1 Data Cache 64KB 32KB 8KB —
private L2 cache 512KB 256KB — —

System Opteron 2356 Xeon X5550 UltraSparc T5140 GeForce
Architecture (Barcelona) (Gainestown) (Victoria Falls) GTX280

Sockets 2 2 2 1
Cores per Socket 4 4 8 30

Threads per Socket‡ 4 8 64 240
primary memory Multithreading

parallelism paradigm HW prefetch HW prefetch Multithreading with coalescing
2×2MB 2×8MB 2×4MB

shared L3 cache (shared by 4 cores) (shared by 4 cores) (shared by 8 cores) —
1GB (device)

DRAM Capacity 16GB 12GB 32GB 4GB (host)
DRAM Pin 42.66(read) 141 (device)

Bandwidth (GB/s) 21.33 51.2 21.33(write) 4 (PCIe)
DP GFlop/s 73.6 85.3 18.7 78

DP Flop:Byte Ratio 3.45 1.66 0.29 0.55
Threading Pthreads Pthreads Pthreads CUDA 2.0
Compiler gcc 4.1.2 gcc 4.3.2 gcc 4.2.0 nvcc 0.2.1221

Table 9.2: Architectural summary of evaluated platforms. ‡A CUDA thread block is considered 1
thread, and 8 may execute concurrently on a streaming multiprocessor. ∗∗16 KB local-store shared
by all concurrent CUDA thread blocks on the streaming multiprocessor.

section.

9.1.1 Benchmark Kernels
To show the broad utility of our framework, we select three conceptually easy-to-understand, yet
deceptively difficult-to-optimize structured grid kernels arising from the application of the finite
difference method to the Laplacian (unext ← ∇2u), divergence (u← ∇·F) and gradient (F← ∇u)
differential operators. Details of these kernels are shown in Figure 9.1 and Table 9.1. All three
operators are implemented using central-difference on a 3D rectahedral block-structured grid via
Jacobi’s method (out-of-place), and benchmarked on a 2563 grid (not including ghost zones). The
Laplacian operator uses a single input and a single output grid, while the divergence operator utilizes
multiple input grids and the gradient operator uses multiple output grids; for the latter two, the
multiple grid inputs or outputs represent a structure of arrays data structure, where the grid contains
3D vectors. In a structure of arrays, each point in the grid has vector data, but this vector data is
stored as a separate grid for each scalar in the vector. Although the code generator has no restrictions
on data structure, for brevity, we only explore the use of a structure of arrays for vector fields.

64

Table 9.1 presents the characteristics of the three structured grid operators and sets performance
expectations. Like the 3C’s cache model [50], we break memory traffic into compulsory read, write
back, write allocate, and capacity misses. A naı̈ve implementation will produce memory traffic
equal to the sum of these components, and will therefore result in the shown arithmetic intensity
(totalflops
totalbytes

), ranging from 0.20–0.08. As a result, the kernels are bound by memory bandwidth
performance on most architectures. The auto-tuning framework in this chapter attempts to improve
performance by eliminating capacity misses; thus it is possible to bound the resultant arithmetic
intensity based only on compulsory read, write back, and write allocate memory traffic. For the
three examined kernels, capacity misses account for dramatically different fractions of the total
memory traffic. Thus, we can also bound the resultant potential performance boost from auto-tuning
per kernel — 1.66×, 1.40×, and 1.28× for the Laplacian, divergence, and gradient respectively.
Moreover, note that the kernel’s auto-tuned arithmetic intensity will vary substantially from each
other, ranging from 0.33–0.11. Therefore, performance is expected to vary proportionally, as
predicted by the Roofline model [119].

9.1.2 Experimental Platforms
To evaluate our structured grid auto-tuning framework, we examine a broad range of leading
multicore designs: AMD Barcelona, Intel Nehalem, Sun Victoria Falls, and Nvidia GTX 280.
A summary of key architectural features of the evaluated systems appears in Table 9.2; space
limitations restrict detailed descriptions of the systems. As all architectures have Flop:DRAM byte
ratios significantly greater than the arithmetic intensities described in Section 9.1.1, we expect all
architectures to be memory bound. Although the node architectures are diverse, they represent
potential building-blocks of current and future ultra-scale supercomputing systems.

9.2 Auto-tuning Framework
Structured grid applications use a wide variety of data structures in their implementations, repre-
senting grids of multiple dimensionalities and topologies. Furthermore, the details of the underlying
applications call for a variety of numerical kernel operations. Thus, building a static auto-tuning
library in the spirit of ATLAS [118] or OSKI [115] to implement the many different structured grid
kernels is infeasible.

The overall flow through the auto-tuning system is shown in Figure 9.2. The system begins
by parsing user-annotated Fortran code into an Abstract Syntax Tree (AST). Architecture-specific
strategy engines then use transformations to manipulate the code into many ASTs that are suitable for
code generation. Then, backend-specific code generators create a test harness and many candidate
source implementations of the kernel, which are then all run using a search engine that executes
each version, finally outputting the best-performing source code for use within an application.

In the next sections, we describe the stages of our auto-tuner flow in more detail.

9.2.1 Front-End Parsing
The front-end for the proof-of-concept tuner parses a description of the structured grid kernel in
a subset of Fortran 95; this subset of an existing well-known language was chosen to simplify

65

.f9
5

.c
u

.f9
5

.h

R
e
fe

re
n
c
e

Im
p
le

m
e
n
ta

ti
o
n

 M

a
n
y
 e

q
u
iv

a
le

n
t

o
p
ti
m

iz
e
d
 i
m

p
le

m
e
n
ta

ti
o
n
s

(p
lu

s
 t
e
s
t
h
a
rn

e
s
s
)

.c

B
e
s
t
p
e
rf

o
rm

in
g

im
p
le

m
e
n
ta

ti
o
n

a
n
d
 c

o
n
fi
g
u
ra

ti
o
n

p
a
ra

m
e
te

rs

.c

Parse

In
te

rn
a
l
A

b
s
tr

a
c
t

S
y
n
ta

x
 T

re
e

R
e
p
re

s
e
n
ta

ti
o
n

C
o
d
e

G
e
n
e
ra

to
rs

C
 w

it
h

p
th

re
a
d
s

C
U

D
A

F
O

R
T

R
A

N

S
tr

a
te

g
y

E
n
g
in

e
s

P
a
ra

ll
e
l

S
e
ri
a
l

G
T

X
2
8
0

V
ic

to
ri
a
 F

a
ll
s

S
e
a
rc

h

E
n
g
in

e
s

in
 c

o
n
te

x
t

o
f
s
p
e
c
if
ic

p
ro

b
le

m

T
ra

n
s
fo

rm
a
ti
o
n
 &

 C
o
d
e
 G

e
n
e
ra

ti
o
n

w
it
h
 h

ig
h
-l
e
v
e
l
k
n
o
w

le
d
g
e

.f9
5

.c
u

.f9
5

.h

R
e
fe

re
n
c
e

Im
p
le

m
e
n
ta

ti
o
n

M
y
ri
a
d
 o

f
e
q
u
iv

a
le

n
t,

o
p
ti
m

iz
e
d
,
im

p
le

m
e
n
ta

ti
o
n
s

(p
lu

s
 t
e
s
t
h
a
rn

e
s
s
)

.c

B
e
s
t
p
e
rf

o
rm

in
g

im
p
le

m
e
n
ta

ti
o
n

a
n
d
 c

o
n
fi
g
u
ra

ti
o
n

p
a
ra

m
e
te

rs

.c

Parse

In
te

rn
a
l
A

b
s
tr

a
c
t

S
y
n
ta

x
 T

re
e

R
e
p
re

s
e
n
ta

ti
o
n

C
o
d
e

G
e
n
e
ra

to
rs

C
 w

it
h

p
th

re
a
d
s

C
U

D
A

F
O

R
T

R
A

N

S
tr

a
te

g
y

E
n
g
in

e
s

P
a
ra

ll
e
l

S
e
ri
a
l

G
T

X
2
8
0

V
ic

to
ri
a
 F

a
ll
s

S
e
a
rc

h

E
n
g
in

e
s

in
 c

o
n
te

x
t

o
f
s
p
e
c
if
ic

p
ro

b
le

m

T
ra

n
s
fo

rm
a
ti
o
n
 &

 C
o
d
e
 G

e
n
e
ra

ti
o
n

w
it
h
 h

ig
h
-l
e
v
e
l
k
n
o
w

le
d
g
e

St
ra

te
gy

 E
ng

in
es

G
PU

Pa
ra

lle
l

x8
6

Se
ria

l
x8

6

Tr
an

sf
or

m
at

io
n

En
gi

ne

Fi
gu

re
9.

2:
St

ru
ct

ur
ed

gr
id

au
to

-t
un

in
g

fr
am

ew
or

k
flo

w
.T

he
tu

ne
rp

ar
se

s
si

m
pl

e
do

m
ai

n-
sp

ec
ifi

c
co

de
in

to
an

ab
st

ra
ct

re
pr

es
en

ta
tio

n,
ap

pl
ie

s
tr

an
sf

or
m

at
io

ns
,g

en
er

at
es

co
de

fo
r

sp
ec

ifi
c

ta
rg

et
ba

ck
en

ds
,a

nd
th

en
de

te
rm

in
es

th
e

op
tim

al
au

to
-t

un
ed

im
pl

em
en

ta
tio

n
vi

a
se

ar
ch

.

66

the front-end parser and because the primary purpose of the proof-of-concept is to explore the
transformations and code generation. Due to the modularity of the transformation engine, a variety
of front-end implementations are possible. The result of parsing in our preliminary implementation
is an Abstract Syntax Tree (AST) representation of the structured grid kernel, on which subsequent
transformations are performed.

9.2.2 Structured Grid Kernel Breadth
Currently, the auto-tuning system handles a specific class of stencil kernels of certain dimensionality
and code structure. In particular, the auto-tuning system assumes a 2D or 3D rectahedral grid, and
a kernel based on arithmetic operations and array accesses, with Jacobi-like structure (separate
input and output grids). Although this proof-of-concept framework does auto-tune serial kernels
with imperfect loop nests, the parallel tuning relies on perfect nesting in order to determine legal
domain decompositions and NUMA (non-uniform memory access) page mapping initialization.
Additionally, we currently treat boundary calculations as a separate computation.Finally, note that
no effort is made to validate that a user-annotated loop actually fits into the class of kernels that
our framework can optimize; this shortcoming will be addressed in the next chapter. Overall, our
auto-tuning system can target and accelerate a large group of structured grid kernels currently in
use, and can be extended to support other kernels in the future.

9.3 Optimization & Code Generation
The heart of the auto-tuning framework is the transformation engine and the backend code generation
for both serial and parallel implementations. The transformation engine is in many respects similar
to a source-to-source translator, but it exploits domain-specific knowledge of the problem space to
implement transformations that would otherwise be difficult to implement as a fully generalized loop
optimization within a conventional compiler. Serial backend targets generate portable C and Fortran
code, while parallel targets include pthreads C code designed to run on a variety of cache-based
multicore processor nodes as well as CUDA versions specifically for the massively parallel Nvidia
GPUs.

Once the intermediate form is created from the front-end description, it is manipulated by
the transformation engine across our spectrum of auto-tuned optimizations. The intermediate
form and transformations are expressed in Common Lisp using the portable and lightweight ECL
compiler [35], making it simple to interface with the parsing front-ends (written in Flex and YACC)
and preserving portability across a wide variety of architectures. Potential alternatives include
implemention of affine scaling transformations or more complex AST representations, such as the
one used by LLVM [70], or more sophisticated transformation engines such as the one provided by
the Sketch [103] compiler.

Because optimizations are expressed as transformations on the AST, it is possible to combine
them in ways that would otherwise be difficult using simple string substitution. For example,
it is straightforward to apply register blocking either before or after cache-blocking the loop,
allowing for a comprehensive exploration of optimization configurations. An example of an AST
transformation is shown in Figure 9.3, which shows how a tree is manipulated to perform loop

67

For!

{body}!params!

For1!

params1! For2!

{body’}!params2!

for (int i=0; i<8; i++) {
body

}

for (int ii=0; ii<8; ii+=2) {
for (int i=ii; i<ii+2; i++) {
body

}

}

Figure 9.3: Example of an AST transformation implementing loop blocking. The tree is manipu-
lated to replace a single loop with two loops, modifying the parameters for the loops to preserve
correctness. Bottom shows a pseudocode representation of the results of the transformation.

blocking. In the rest of this section, we discuss serial transformations and code generation, followed
by auto-parallelization and parallel-specific transformations and generators.

9.3.1 Serial Optimizations
Several common optimizations have been implemented in the framework as AST transformations,
including loop unrolling/register blocking (to improve innermost loop efficiency), cache blocking
(to expose temporal locality and increase cache reuse), and arithmetic simplification/constant propa-
gation. These optimizations are implemented to take advantage of the specific domain of interest:
Jacobi-like structured grid kernels of arbitrary dimensionality. Possible additional transformations
include those shown in previous work [32]: better utilization of SIMD instructions and common
subexpression elimination (to improve arithmetic efficiency), cache bypass (to eliminate cache fills),
and explicit software prefetching.

A domain-specific code generator run by the user has the freedom to implement transformations
that a compiler may not. Although the current set of optimizations may seem identical to existing
compiler optimizations, strategies such as memory structure transformations are generally not
applied by compilers, since such optimizations are specific to structured grid-based computations.
Indeed, we use multidimensional array padding in ways that may be difficult for general compilers
to implement automatically. Our restricted domain allows us to make certain assumptions about
aliasing and dependencies. Our framework’s transformations yield code that outperforms compiler-
only optimized versions mostly because compiler algorithms cannot always prove that these (safe)
optimizations are allowed.

Given the structured grid transformation framework, we now present parallelization optimiza-
tions, as well as cache- and GPU-specific optimizations. The shared-memory parallel code gen-
erators leverage the serial code generation routines to produce the version run by each individual
thread. Because the parallelization mechanisms are specific to each architecture, both the strategy
engines and code generators must be tailored to the desired targets. For the cache-based systems

68

+Y

+Z

(b)
Decomposition into

Thread Blocks

(c)
Decomposition into

Register Blocks

(a)
Decomposition of a Node Block

into a Chunk of Core Blocks

RYRX
RZ

CY

C
Z

CX

TYTX

NY

N
Z

NX

+X
(unit stride) TY

C
Z

TX

Figure 9.4: Four-level problem decomposition: In (a), a node block (the full grid) is broken into
smaller chunks. All core blocks in a chunk are processed by the same subset of threads. One
core block from the chunk in (a) is magnified in (b). A single thread block from the core block
in (b) is then magnified in (c). A thread block should exploit common resources among threads.
Finally, the magnified thread block in (c) is decomposed into register blocks, which exploit data
level parallelism.

(Intel, AMD, Sun) we use pthreads for lightweight parallelization; on the Nvidia GPU, the only
parallelization option is Nvidia’s CUDA language and compiler.

Since the parallelization strategy influences code structure, the AST— which represents code
run on each individual thread— must be modified to reflect the chosen parallelization strategy. The
parallel code generators make the necessary modifications to the AST before passing it to the serial
code generator.

9.3.2 Multicore-specific Optimizations and Code Generation
Following the effective blocking strategy presented in previous studies [32], we decompose the
problem space into core blocks, as shown in Figure 9.4. The size of these core blocks can be tuned
to avoid capacity misses in the last level cache. Each core block is further divided into thread
blocks such that threads sharing a common cache can cooperate on a core block. Though our code
generator is capable of using variable-sized thread blocks, we set the size of the thread blocks equal
to the size of the core blocks to help reduce the size of the auto-tuning search space. The threads of
a thread block are then assigned chunks of contiguous core blocks in a round robin fashion until the
entire problem space has been accounted for. Finally each thread’s structured grid loop is register
blocked to best utilize registers and functional units. The core block size, thread block size, chunk
size, and register block size are all tunable by the framework.

The code generator creates a new set of loops for each thread to iterate over its assigned set of
thread blocks. Register blocking is accomplished through strip mining and loop unrolling via the
serial code generator.

69

NUMA-aware memory allocation is implemented by pinning threads to the hardware and taking
advantage of first-touch page mapping policy during data initialization. The code generator analyzes
the decomposition and has the appropriate processor touch the memory during initialization.

9.3.3 CUDA-specific Optimizations and Code Generation
CUDA [87] programming for Nvidia GPUs is oriented around CUDA thread blocks, which differ
from the thread blocks used in the previous section. CUDA thread blocks are vector elements
mapped to the scalar cores (lanes) of a streaming multiprocessor. The vector conceptualization
facilitates debugging of performance issues on GPUs. Moreover, CUDA thread blocks are analogous
to threads running SIMD code on superscalar processors. Thus, parallelization on the GTX280, a
recent GPU by Nvidia, is a straightforward SPMD domain decomposition among CUDA thread
blocks; within each CUDA thread block, work is parallelized in a SIMD manner.

To effectively exploit cache-based systems, code optimizations attempt to employ unit-stride
memory access patterns and maintain small cache working sets through cache blocking— thereby
leveraging spatial and temporal locality. In contrast, the GPGPU model forces programmers to
write a program for each CUDA thread. Thus, spatial locality may only be achieved by ensuring
that memory accesses of adjacent threads (in a CUDA thread block) reference contiguous segments
of memory to exploit hardware coalescing. Consequently, our GPU implementation ensures spatial
locality for each point in the structured grid by tasking adjacent threads of a CUDA thread block
to perform kernel operations on adjacent grid locations. Some performance will be lost as not all
coalesced memory references are aligned to 128-byte boundaries.

The CUDA code generator is capable of exploring the numerous different ways of dividing the
problem among CUDA thread blocks, as well as tuning both the number of threads in a CUDA
thread block and the access pattern of the threads. For example, in a single time step, a CUDA
thread block of 256 CUDA threads may access a tile of 32 × 4 × 2 contiguous data elements; the
thread block would then iterate this tile shape over its assigned core block. In many ways, this
exploration is analogous to register blocking within each core block on cache-based architectures.

Our code generator currently only supports the use of global “device” memory, and so does not
take advantage of the low-latency local-store style “shared” memory present on the GPU. Thus, the
generated code does not take advantage of the temporal locality of memory accesses that the use of
GPU shared memory provides. The code generator could be modified to generate shared memory
code for GPUs.

9.4 Auto-Tuning Strategy Engine
In this section, we describe how the auto-tuner searches the enormous parameter space of serial
and parallel optimizations described in previous sections. Because the combined parameter space
of the preceding optimizations is so large, it is infeasible to try all possible strategies. In order to
reduce the number of code instantiations the auto-tuner must compile and evaluate, we use strategy
engines to enumerate an appropriate subset of the parameter space for each platform.

The strategy engines enumerate only those parameter combinations (strategies) in the subregion
of the full search space that best utilize the underlying architecture. For example, cache blocking in

70

Optimization Parameter Tuning Range by Architecture
Category Parameter Name Barcelona/Nehalem Victoria Falls GTX280

Data Allocation NUMA Aware
√ √

N/A
CX NX {8...NX} {16†..NX}

Core Block Size CY {8...NY} {8...NY} {16†..NY}
CZ {128...NZ} {128...NZ} {16†..NZ}

Domain TX CX CX {1..CX
16
}‡

Decomposition Thread Block Size TY CY CY {CY
16

..CY}‡
TZ CZ CZ {CZ

16
..CZ}‡

Chunk Size {1... NX×NY×NZ
CX×CY×CZ×NThreads

} N/A

Array Indexing
√ √ √

Low RX {1...8} {1...8} 1
Level Register Block Size RY {1...2} {1...2} 1∗

RZ {1...2} {1...2} 1∗

Table 9.3: Attempted optimizations and the associated parameter spaces explored by the auto-tuner
for a 2563 structured grid problem (NX,NY,NZ = 256). All numbers are in terms of doubles.
† Actual values for minimum core block dimensions for GTX280 dependent on problem size. ‡

Thread block size constrained by a maximum of 256 threads in a CUDA thread block with at least
16 threads coalescing memory accesses in the unit-stride dimension. ∗The CUDA code generator is
capable of register blocking the Y and Z dimensions, but due to a confirmed bug in the Nvidia nvcc
compiler, register blocking was not explored in our auto-tuned results.

the unit stride dimension could be practical on the Victoria Falls architecture, while on Barcelona or
Nehalem, the presence of hardware prefetchers makes such a transformation non-beneficial [31].

Further, the strategy engines keep track of parameter interactions to ensure that only legal
strategies are enumerated. For example, since the parallel decomposition changes the size and
shape of the data block assigned to each thread, the space of legal serial optimization parameters
depends on the values of the parallel parameters. The strategy engines ensure all such constraints
(in addition to other hardware restrictions such as maximum number of threads per processor) are
satisfied during enumeration.

For each parameter combination enumerated by the strategy engine, the auto-tuner’s search
engine then directs the parallel and serial code generator components to produce the code instanti-
ation corresponding to that strategy. The auto-tuner runs each instantiation and records the time
taken on the target machine. After all enumerated strategies have been timed, the fastest parameter
combination is reported to the user, who can then link the optimized version of the structured grid
kernel into their existing code.

Table 9.3 shows the attempted optimizations and the associated parameter subspace explored by
the strategy engines corresponding to each of our tested platforms. While the search engine currently
does an exhaustive search over the parameter subspace dictated by the strategy engine (which is a
subset of the entire possible optimization space), future work could include more intelligent search
mechanisms such as hill-climbing or machine learning techniques [41], where the search engine
can use timing feedback to dynamically direct the search.

71

9.5 Performance Evaluation
In this section, we examine the performance quality and expectations of our auto-parallelizing
and auto-tuning framework across the four evaluated architectural platforms. The impact of our
framework on each of the three kernels is compared in Figures 9.5–9.7, showing performance of
the original serial kernel (gray), auto-parallelization (blue), auto-parallelization with NUMA-aware
initialization (purple), and auto-tuning (red). The GTX280 reference performance (blue) is based on
a straightforward implementation that maximizes CUDA thread parallelism. We do not consider the
impact of host transfer overhead; previous work [32] examined this potentially significant bottleneck
in detail. Overall, results are ordered such that threads first exploit multithreading within a core,
then multiple cores on a socket, and finally multiple sockets. Thus, on Nehalem, the two thread
case represents one fully-packed core; similarly, the GTX280 requires at least 30 CUDA thread
blocks to utilize the 30 cores (streaming multiprocessors).

9.5.1 Auto-Parallelization Performance
The auto-parallelization scheme specifies a straightforward domain decomposition over threads in
the least unit-stride dimension, with no core, thread, or register blocking. To examine the quality
of the framework’s auto-parallelization capabilities, we compare performance with a parallelized
version using OpenMP [89], along with memory allocation that ensures proper NUMA-aware
memory decomposition via first-touch pinning policy. Results, shown as yellow diamonds in
Figures 9.5–9.7, show that performance is well correlated with our framework’s NUMA-aware
auto-parallelization. Furthermore, our approach slightly improves Barcelona’s performance, while
Nehalem and Victoria Falls see up to a 17% and 25% speedup (respectively) compared to the
OpenMP version, indicating the effectiveness of our auto-parallelization methodology even before
auto-tuning.

9.5.2 Performance Expectations
When tuning any application, it is important to know when one has reached architectural peak
performance, and have little to gain from continued optimization. We make use of a simple
empirical model based on the Roofline performance model to establish this point of diminishing
returns and use it to evaluate how close our automated approach can come to machine limits.
We now examine achieved performance in the context of this simple model based on hardware
characteristics. Assuming all kernels are memory bound and do not suffer from an abundance of
capacity misses, we approximate the performance bound as the product of streaming bandwidth and
each structured grid kernel’s arithmetic intensity (0.33, 0.20 and 0.11 — as shown in Table 9.1).
Using an optimized version of the STREAM benchmark [30], which we modified to reflect the
number of read and write streams for each kernel, we obtain expected peak performance based on
memory bandwidth for the CPUs. For the GPU, we use two versions of STREAM: one that consists
of exclusively read traffic, and another that is half read and half write.

Our model’s expected performance range is represented as a green line (for the CPUs) and a green
region (for the GPUs) in Figures 9.5–9.7. For Barcelona and Nehalem, our optimized kernels obtain
performance essentially equivalent to peak memory bandwidth. For Victoria Falls, the obtained
bandwidth is around 20% less than peak for each of the kernels, because our framework does not

72

 0

 1

 2

 3

 4

 5

1 2 4 8

G
F

lo
p

/s

Threads

Barcelona

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16
G

F
lo

p
/s

Threads

Nehalem

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

8 16 32 64 128

G
F

lo
p

/s

Threads

Victoria Falls

 0

 2

 4

 6

 8

 10

 12

 14

 16

Ref 1 2 4 8 16 32 64 128256512 1K

G
F

lo
p

/s

CUDA Thread Blocks

GTX280

-2

0

2

4

6

8

10

12

1 2 4 8 16

G
Fl
op

/s

Threads

TIT

baseline auto-parallel +NUMA +auto-tuning OpenMP

Figure 9.5: Laplacian performance as a function of auto-parallelization and auto-tuning on the four
evaluated platforms. The green region marks performance extrapolated from STREAM bandwidth.
For comparison, the yellow diamond shows performance achieved using the original structured grid
kernel with OpenMP pragmas and NUMA-aware initialization.

73

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8

G
F

lo
p

/s

Threads

Barcelona

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16
G

F
lo

p
/s

Threads

Nehalem

 0

 1

 2

 3

 4

 5

 6

8 16 32 64 128

G
F

lo
p

/s

Threads

Victoria Falls

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Ref 1 2 4 8 16 32 64 128256512 1K

G
F

lo
p

/s

CUDA Thread Blocks

GTX280

-2

0

2

4

6

8

10

12

1 2 4 8 16

G
Fl
op

/s

Threads

TIT

baseline auto-parallel +NUMA +auto-tuning OpenMP

Figure 9.6: Divergence performance as a function of auto-parallelization and auto-tuning on
the four evaluated platforms. The green region marks performance extrapolated from STREAM
bandwidth. For comparison, the yellow diamond shows performance achieved using the original
structured grid kernel with OpenMP pragmas and NUMA-aware initialization.

74

 0

 0.5

 1

 1.5

 2

1 2 4 8

G
F

lo
p

/s

Threads

Barcelona

 0

 1

 2

 3

 4

 5

1 2 4 8 16
G

F
lo

p
/s

Threads

Nehalem

 0

 0.5

 1

 1.5

 2

 2.5

8 16 32 64 128

G
F

lo
p

/s

Threads

Victoria Falls

 0

 2

 4

 6

 8

 10

Ref 1 2 4 8 16 32 64 128256512 1K

G
F

lo
p

/s

CUDA Thread Blocks

GTX280

-2

0

2

4

6

8

10

12

1 2 4 8 16

G
Fl
op

/s

Threads

TIT

baseline auto-parallel +NUMA +auto-tuning OpenMP

Figure 9.7: Gradient performance as a function of auto-parallelization and auto-tuning on the four
evaluated platforms. The green region marks performance extrapolated from STREAM bandwidth.
For comparison, the yellow diamond shows performance achieved using the original structured grid
kernel with OpenMP pragmas and NUMA-aware initialization.

75

 0

 2

 4

 6

 8

 10

 12

 14
G

F
lo

p
/s

Laplacian

 0

 2

 4

 6

 8

 10

 12

 14

 16

G
F

lo
p

/s

Divergence

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

G
F

lo
p

/s

Gradient

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
F

lo
p

/s
/W

a
tt

Avg Pwr Efficiency

barcelona nehalem VF GTX280 GTX280(card only)

Figure 9.8: Peak performance after auto-tuning and parallelization.

currently implement software prefetching and array padding, which are critical for performance on
this architecture. Finally, the GTX280 results are also below our performance model bound, likely
due to no array padding [32]. Overall, our fully-tuned performance closely matches our model’s
expectations, while highlighting areas that could benefit from additional optimizations.

9.5.3 Performance Portability
The auto-tuning framework takes a serial specification of the structured grid kernel and achieves a
substantial performance improvement, due to both auto-parallelization and auto-tuning. Overall,
we achieve substantial performance improvements across a diversity of architectures— from
GPUs to multi-socket multicore x86 systems. Barcelona and Nehalem see between 1.7× and 4×
improvement for both the one and two socket cases over the conventional parallelized case, and
up to 10× improvement over the serial code. The results also show that auto-tuning is essential
on Victoria Falls, enabling much better scalability and increasing performance by 2.5× and 1.4×
on 64 and 128 threads respectively in comparison to the conventional parallelized case, but a full
22× improvement over an unparallelized example. Finally, auto-tuning on the GTX280 boosted
performance by 1.5× to 2× across the full range of kernels — a substantial improvement over
the baseline CUDA code, which is implicitly parallel. This clearly demonstrates the performance
portability of this framework across the sample kernels.

The auto-tuner is able to achieve results that are extremely close to the architectural peak
performance of the system, which is limited ultimately by memory bandwidth. This level of
performance portability using a common specification of kernel requirements is unprecedented for
structured grid codes.

76

9.5.4 Programmer Productivity Benefits
We now compare our framework’s performance in the context of programming productivity. Pre-
vious work [32] presented the results of Laplacian kernel optimization using a hand-written auto-
tuning code generator, which required months of Perl script implementation, and was inherently
limited to a single kernel instantiation. In contrast, utilizing our framework across a broad range of
possible structured grid kernels only requires a few minutes to annotate a given kernel region, and
pass it through our auto-parallelization and auto-tuning infrastructure, thus tremendously improving
productivity as well as kernel extensibility.

Currently our framework does not implement several hand-tuned optimizations [32], including
SIMDization, padding, or the employment of cache bypass (movntpd). However, comparing results
over the same set of optimizations, we find that our framework attains excellent performance that
is comparable to the hand-written version. We obtain near identical results on the Barcelona and
even higher results on the Victoria Falls platform (6 GFlop/s versus 5.3 GFlop/s). A significant
disparity is seen on the GTX280, where previous hand-tuned Laplacian results attained 36 GFlop/s,
compared with our framework’s 13 GFlop/s. For the CUDA implementations, our automated
version only utilizes optimizations and code structures applicable to general structured grid kernels,
while the hand-tuned version explicitly discovered and exploited the temporal locality specific to
the Laplacian kernel— thus maximizing performance, but limiting the method’s applicability.

9.5.5 Architectural Comparison
Figure 9.8 shows a comparative summary of the fully-tuned performance on each architecture. The
GTX280 consistently attains the highest performance, due to its massive parallelism at high clock
rates, but transfer times from system DRAM to board memory through the PCI Express bus are
not included and could significantly impact performance [32]. Nehalem obtains the best overall
performance of the cache-based systems, due to the combination of high memory bandwidth per
socket and hardware multithreading to fully utilize the available bandwidth. Additionally, Victoria
Falls obtains high performance, especially given its low clock speed, thanks to massive parallelism
combined with an aggregate memory bandwidth of 64 GB/s.

9.6 Limitations
This tuner is able to obtain a large percentage of Roofline performance for at least three different
structured grid kernels across a number of architectures. The proof-of-concept successfully demon-
strates that domain-specific transformations are capable of obtaining high performance across a
number of kernels for the structured grid domain. However, the tuner has a few limitations.

The tuner implemented here operates directly on syntactic tree of the computation and attempts
to infer properties of the structured grid from the program text. In addition, there is no check
for correctness or analysis to determine whether the computation under study can be transformed
properly and still obtain a correct result. In other words, from the perspective of a user, either the
structured grid kernel is transformed and obtains correct results, or the kernel is transformed and
obtains an incorrect result, or the auto tuning framework crashes. This user experience is less than
ideal.

77

Furthermore, in speaking to domain scientists, the model of using an external auto-tuner that
examines the program text is far from the ideal of “Matlab-like” expressiveness and ease-of-use. It is
also difficult to integrate with an existing build system and prone to error. Transformations that could
improve performance are not just locally-constrained; some require changing the behavior of the
entire program. For example, enabling NUMA-aware allocation requires changing the initialization
of the data structure, which often occurs far away from the actual calculation. Another example is
that ensuring that the data structures are laid out and traversed in the proper order requires making
sure the data allocation and traversal both use the same order, for all kernels in an application.

From the perspective of an auto-tuner developer, much of the infrastructure created in order to
develop this proof of concept could be abstracted away and be reused for other auto tuning systems.
Such a library or framework would make the development of auto-tuning systems that manipulate
program text far easier. In addition, although the language used, Lisp, is relatively productive and
well-suited for the task of tree transformation, neither the user base of expert auto-tuning system
writers nor the user base of application writers are generally familiar with the language.

Finally, the brute force search method employed here may be overkill in many circumstances.
The large number of layers of blocking and many other optimizations may be unnecessary. Such a
determination requires looking at the data to see which optimizations yield the highest performance,
perhaps with decision-tree machine learning approaches to automatically infer the highest-value
optimizations and parameters. By analyzing which optimizations were most important for speeding
up the kernels, we may be able to create a simpler tuner that has the same level of performance,
without the many layers of complexity present in this proof of concept.

These limitations point to new directions in which auto tuning frameworks and systems for other
domains can be developed, and motivate the use of the SEJITS methodology for our DSEL in the
next chapter.

9.7 Summary
This chapter described a proof-of-concept auto-tuning framework for structured grid computations
that used domain-specific AST transformations combined with architecture-specific strategy engines
to explore a large space of possible implementations for each kernel. Our approach obtained
excellent speedups and high percentages of attainable performance across architectures, but suffered
from a number of shortcomings and limitations that motivate our DSEL for this domain. The
proof-of-concept was successful, however, in showing that structured grid computations can be
optimized in a general and reusable way using domain-specific code transformation and generation.

78

Chapter 10

Sepya: An Embedded Domain-Specific
Auto-tuning Compiler for Structured Grids

This chapter describes Sepya (Stencils Embedded in PYthon with Auto-tuning), an embedded
domain-specific language and auto-tuning compiler for structured grid computations. The language,
embedded in Python, transforms user-supplied stencil functions into high performance parallel code
for multicore and is capable of obtaining a high percentage of peak performance while allowing
programmers to express their computations in a high-level language. The DSEL and compiler differ
from the previous chapter in the following ways:

• The DSEL we build here supports a larger scope of structured grid computations.

• The language is formally defined, and Sepya ensures the input is validated as a supported
structured grid computation before any effort to optimize. This prevents correctness issues
that could arise in the original tuner.

• Sepya avoids analysis by validating input code during the conversion to a declarative interme-
diate form.

• Instead of building up an entire code transformation infrastructure, the Sepya leverages Asp
for many operations, reducing the complexity of the DSEL compiler. Furthermore, it is
written in Python, a language familiar to a large community of programmers.

• Currently, Sepya only targets multicore CPUs; no GPU code is generated. However, the
multicore CPU code is far simpler than the earlier tuner, as the set of possible optimizations
is reduced to those that proved to be beneficial in the original proof-of-concept.

• Sepya supports optimizing and generating code for multi-timestep structured grid computa-
tions, which were not supported in the earlier proof-of-concept.

• Finally, this DSEL benefits from all the advantages of being embedded and using our frame-
work, including fewer lines of code as well as enabling domain scientists to benefit from
high-level languages and existing libraries in them. The resulting code has Matlab-like ease
of use.

79

Section 10.1 describes the implemented language, including the intermediate representation
and the language semantics. In Section 10.2, the structure of the Sepya compiler is described.
Section 10.3 outlines the implemented algorithms and optimizations. Performance and expressibility
are evaluated in Section 10.4, including a brief discussion on productivity. Section 10.5.1 describes
several possible extensions to the language, extending its ability to express additional kernels.
Finally, Section 10.6 summarizes.

10.1 Analysis-Avoiding DSEL for Structured Grids
This section outlines the design of an embedded DSL for structured grid calculations. Defining the
scope of the language requires a balance between two motivating factors. First, the language must
be broad enough to support many structured grid kernels; otherwise it is not useful. Secondly, the
language must be restricted enough to make constructing an embedded DSL compiler tractable.
The smaller the scope, the easier it is to generate correct code that obtains performance, while
eliminating the need for complicated analyses.

To explore the minimum scope of a useful structured grid language, we begin by defining a set
of building blocks common to many kernels in the motif.

10.1.1 Building Blocks of Structured Grid Calculations
From the characteristics of structured grid computations, as described in Chapter 8, we find that a
DSEL for structured grid computations must include the following abstractions:

• A multidimensional data structure for the grid. Grids can be inputs or outputs (for Jacobi-style
computations), though some applications use a single grid for both input and output (for
Gauss-Seidel or Successive Over Relaxation, which improve convergence properties and
reduce memory footprint).

• A control structure that iterates over the grid, differentiating between interior points and
border points, since many computations apply separate functions for the two parts of the grid.

• An operator function to be applied at each point in the grid, and, optionally, a separate
operator to be applied at each boundary point. These operators can be thought of as pure
side-effect-free functions that take as inputs some subset of the neighbors of the central point
and output a new value for the center.

• Within the operator, some way to name neighbors of the center point. In many cases, these
neighbors are grouped into sets that are treated somewhat differently (for example, different
sets may have different weights associated with them).

• In some structured grid computations, an abstraction for timesteps, expressing the repeated
application of the operator over the entire grid a fixed number of times. This is common in
iterative algorithms, and between timesteps input and output grids are switched.

This is by no means a comprehensive list; additional abstractions and constructs, such as indirect
lookups for coefficients, will increase the number of expressible structured grid kernels. However,

80

Restriction Analysis Avoided
Input grids and output grids must be disjoint Aliasing
Number of timesteps must be static Tailor code generation for number of timesteps
Neighbors must be predefined by user No need to analyze code for operator

footprint, easing all optimizations and
preventing users from changing neighbor sets
on the fly

Relationship of input/output grids explicit No need for analysis to determine current input
for multiple timesteps and output grids
Limit math functions allowed Prevent side-effects in external functions
Specify separate kernels for interior and Allow separate optimization of interior and
border border without needing to detect which is which
Only allow weight lookups into a 1D table Prevents overriding our restriction that neighbors

should be the same for each point in the
multidimensional grid

Table 10.1: Summary of restrictions for the Sepya DSEL and their benefits.

these constructs are sufficient to cover a large number of widely-used kernels (in fact, a larger space
than the proof-of-concept in Chapter 9) and present a minimal set of abstractions necessary to build
a useful language for structured grid kernels.

10.1.2 Language and Semantics
In our approach, we define the intermediate representation, called the Semantic Model [38]. This
Semantic Model will determine the scope of the language, formally defining the kinds of com-
putations the language can express. The goal in defining this intermediate representation is to
create a language that implements the abstractions above while minimizing the need for analysis;
therefore, it will be necessary to define some restrictions on the various constructs. In addition, the
abstractions should have concrete semantics that conform to a domain scientist’s conceptual model
of structured grids. The Semantic Model is defined similarly to a syntax definition, but encodes the
semantics of a calculation as opposed to syntax.

Figure 10.1 shows the Semantic Model for the structured grid DSEL. Note that this language
is quite a bit broader than the minimal set of constructs defined earlier; however, the additional
constructs have been chosen to add relatively large amounts of expressibility in exchange for the
added complexity. An example of such a construct is the InputElementExprIndex node, which
allows indexing a single-dimensional weight array. This allows expressing additional structured
grid kernels, but adds little complexity since the array is generally assumed to be much smaller than
the sizes of the input and output arrays.

Some of the operational semantics of the constructs are worth examining in more detail. In the
StencilModel, there is an interior kernel which is applied to the iteration space of interior
points of the input grids in an unordered manner. In other words, the computation is

∀x ∈ interior(input), outputs(x) = f(x, inputs, outputs)

81

Constraint checks are not shown

Top-level node for an instance of a semantic model

StencilModel(input_grids=Identifier*, output_grids=Identifier*, interior_kernel=Kernel,

border_kernel=Kernel)

a kernel either does one or many timesteps

Kernel(body=TimeStepIter | (StencilNeighborIter | OutputAssignment)*)

iterator over neighbors

StencilNeighborIter(grid=Identifier, neighbors_id=Constant, body=OutputAssignment*)

assigns value Expr to current output element

OutputAssignment(target=OutputElement, value=Expr)

iterates over timesteps

TimeStepIter(limit=types.IntType, grid_rotate=GridRotate*,

body=(StencilNeighborIter | OutputAssignment)*)

rotates grids left

GridRotate(grids=Identifier*)

Expr = Constant

| Neighbor # Refers to current neighbor inside a StencilNeighborIter

| OutputElement # Refers to current output element

| InputElement # An element of input grid at a neighbor location

| InputElementZeroOffset # The element of the input grid at the center location

| InputElementExprIndex # Element used to lookup into a 1D grid (for coefficients)

| ScalarBinOp

| MathFunction

the building block for the function applied at each point

ScalarBinOp(left=Expr, op=(ast.Add|ast.Sub|ast.Mult|ast.Div|ast.FloorDiv|ast.Mod),

right=Expr)

we only allow a few math functions

MathFunction(name, args=Expr*)

Figure 10.1: Semantic Model for the structured grid language.

where x is a point in the interior, and the function f is the interior kernel. No ordering can be
assumed for x. Similarly, the StencilNeighborIter iterates over the points in the numbered
set of neighbors (i.e. neighbors id) of the grid, and executes the body. Again, the iteration is
unordered.

An OutputAssignment node assigns to its target (which is one of the interior points of the
grid, assuming it is an interior iteration) the expression in the value field. Note that the way this is
constructed forces the left hand side of the assignment to be into an output grid, and that the way the
right hand expression is constructed prevents the right hand side from accessing a neighbor element
in the output grid.

A final node to examine is the GridRotate construct, which is used to change the assignment

82

of input/output grids between timesteps. For example, in a calculation with a single input and output
grid, between timesteps the two grids are almost always switched. The semantics of the construct
are that after its execution,

grids[i%L] = grids[(i+ 1)%L]

where L is the number of grids. In other words, each identifier now points to the grid its successive
grid pointed to earlier.

10.1.3 Avoiding Analysis
In order to make it “correct-by-construction” (i.e. analysis-avoiding), we limit the Semantic Model
as much as possible while retaining the ability to express kernels. For example, the structure of
the Semantic Model does not allow the set of neighbors to be dependent on the location within
the grid (other than the distinction between the interior or border). As another example, the
kernel cannot change at all based on the timesteps, since the current timestep cannot be named
in the kernel. Similarly, the OutputAssignment node described above is restricted to prevent
expressing calculations that are not structured grid computations. These limitations, expressed
through the structure of the intermediate representation, help restrict the complexity of the language
and compiler, while preserving the most common patterns used in structured grid computations. A
summary of the restrictions encoded in our Semantic Model is shown in Table 10.1, along with the
benefits of each restriction.

One major restriction is that the sets of neighbors (multiple sets are allowed, and iterators can
iterate over a particular set only) are defined outside of the kernel function, and cannot be redefined
within the kernel. Although this set could be inferred using relatively simple static analysis, we force
the user to pre-declare the neighbors for two reasons. First, this prevents the user from changing the
neighbor set from with the kernel. Secondly, this explicit statement of the shape reduces the need for
implementing analysis when transforming the loop into blocked or unrolled code, which require the
shape of the kernel to be known. Thus, this restriction helps simplify the compiler implementation
by forcing the user to convey explicit information to the compiler as well as by ensuring the kernel
does not use features unsupported by the compiler.

Having examined the Semantic Model and how it avoids analysis while expressing a large set of
structured grid kernels, we now turn to the embedding of this language into Python.

10.1.4 Language in Python Constructs
While the Semantic Model defines the internal representation, and therefore the semantics of what
structured grids are expressible, users write their code in the embedding language. We choose
Python for our DSEL, though others could be used. We must define a mapping from pure Python
syntax into the Semantic Model; this mapping will be used by Sepya to construct instances of the
intermediate representation, during which correctness checking will occur.

The primary consideration when designing this mapping is to consider, as much as possible, the
semantics of pure Python to design the mapping in a way that looks familiar to the domain scientist,
while limiting the complexity for the compiler. In addition, the mapping should be expressed as an
API for programmers to use, while specifying any restrictions/assumptions needed by the DSEL

83

class Laplacian3D(StencilKernel):

 def kernel(self, in_grid, out_grid):

 while self.timestep() < 8:

 for x in out_grid.interior_points():

 for y in self.neighbors(in_grid, x, 1):

 out_grid[x] = out_grid[x] + (1.0/6.0)*in_grid[y]

 self.rotate_grids(in_grid, out_grid)

StencilModel

TimeStepIter

StencilNeighborIter

OutputAssignment

GridRotate

Figure 10.2: Example of a multi-timestep structured grid computation, embedded in Python,
showing the correspondence with major nodes in the Semantic Model.

compiler. This eliminates the need for application writers to understand the internals of the Semantic
Model.

From the DSEL user’s perspective, the language can be summarized with the following pseudo-
API:

• A structured grid kernel is encapsulated in a class that inherits from the StencilKernel
class.

• The actual computation is in an instance method called kernel(), with parameters that are
the input and output grids for the computation. The kernel function consists of one or more
iterators over grid interiors or border points.

• Within an interior iterator, one can iterate over the points that are neighbors to the
center point by using the neighbors iterator, which yields each neighboring point.

• The order in which interior points and neighbor points are iterated over is not guaranteed.

• The computation at each point has an output grid on the left hand side, and on the right hand
side can only access the center point of the output grid, the center point of the input grid(s),
or the neighbor point of the input grid(s). A few other kinds of accesses (for example, into a
lookup array for coefficients) are also possible.

• All input arrays (except 1D lookup tables) and output arrays must have the same sizes and
dimensionality in order for the iterators to work properly. This restriction can be addressed
with language extensions described in Section 10.5.1.

This relatively succinct description describes the language in enough detail to enable using
the structured grid DSEL. Figure 10.3 shows a full example of defining a structured grid kernel
and calling it. Another example, which shows the correspondence between Python syntax and the
intermediate representation nodes, is shown in Figure 10.2.

In addition, we ensure that this language defined as pure Python constructs also runs correctly
without compilation. To do this, we add appropriate pure Python instance methods to the respective
classes; if compilation fails, this pure Python implementation is run, ensuring that the user experience
is not broken due to the compiler not being able to translate a construct, although the resulting
computation may be orders of magnitude slower.

84

class My1DKernel(StencilKernel):
def __init__(self):
super(MyKernel, self).__init__()

set the neighbors set 1 as the point

before and the point after

self.set_neighbors(1, [[1],[-1]])

the actual kernel function

def kernel(self, out_grid, in_grid):
for x in out_grid.interior_points():
for y in self.neighbors(in_grid, x, 1):
out_grid[x] += 0.5 * in_grid[y]

input_grid = StencilGrid([100])

output_grid = StencilGrid([100])

load the data from somewhere

DataLoader().load(input_grid)

apply the kernel

MyKernel().kernel(out_grid, in_grid)

Figure 10.3: Full example of defining a simple 1D kernel and calling it in Python, using Sepya.

10.2 Structure of the Sepya Compiler
The structure of the Sepya compiler follows the standard Asp flow described in Chapter 5. First,
Python source is parsed and transformed into an abstract syntax tree (AST). Then, this AST is
transformed into an instance of the Semantic Model, during which correctness checks are performed
to ensure the computation can be correctly converted into low-level code.

After converting to the intermediate representation, the execution path diverges depending on
whether the computation executes single or multiple timesteps. For a single-iteration kernel, the
code is transformed into a set of nested loops in the C++ syntax tree, and these loops undergo
phased transformations to apply a number of optimizations (see Section 10.3). These transforma-
tions primarily utilize built-in standard transformations from the Asp framework, as described in
Chapter 5, but use domain-specific knowledge to control when and how to apply them, using insight
gained from the proof-of-concept in Chapter 9. For example, the parallelization uses Asp’s standard
OpenMP support, but domain-specific knowledge dictates that the parallelization should not cut the
least unit-stride dimension.

In the case of a multi-timestep computation, because the majority of the performance gain is
due to blocking in time to reuse data already in cache, the algorithm is implemented by directly
translating just the innermost computation (the function applied at each point). This transformed
computation is then inserted into an Asp template, instantiated using the properties of the kernel,
including the footprint of the computation and the dimensionality of the grids.

To facilitate debugging, the compiler also implements an interpreted backend, which can
interpret each node in the intermediate representation instead of translating the computation. This
allows implementing cross-language debugging algorithms, such as those that compare intermediate

85

!"#$%

&'"(%)*'&+,%

-."(/$%)*'&+,%

"(!#,-("%%

)*'&+%

Figure 10.4: Parallelization/optimization strategy for the structured grid DSEL compiler. The grid
is decomposed into core blocks, which are then decomposed into thread blocks, and finally into
register blocks.

Optimization Exploration in Original Tuner Exploration in Sepya
NUMA-aware data allocation

√ √

Core blocking 2 most unit-stride dimensions 2nd least unit-stride dimension only
Thread blocking One per core block One per core block
Chunking

√
-

Array index simplification
√

-
Array padding

√ √

Register blocking All dimensions Only most unit-stride dimension
Time skewing -

√

Table 10.2: Summary of optimizations implemented in Sepya, compared to the proof-of-concept
auto-tuner from Chapter 9.

states at synchronization points between the interpreted and translated versions, such as those
described in Section 5.6. In addition, this interpreted backend also allows compiler developers to
quickly test new front-end translations for new functionality without needing to implement full
translation.

10.3 Implemented Code Generation Algorithms &
Optimizations

Sepya implements two different algorithms, depending on whether the computation runs for a single
iteration over the grid or for multiple iterations. This section describes the optimization strategies
for the two algorithms. Table 10.2 summarizes the optimizations and parallelization used in the
DSEL compiler and how they differ from the original proof-of-concept auto-tuner.

The single iteration algorithm, for structured grid computations that are not conducive to multi-
timestep optimizations, is a variant of the multi-level blocking described in Chapter 9. For the
DSEL compiler, we simplify the blocking by removing additional layers of blocking to make it
more general, and to ease implementation difficulty. Although the removed layers of blocking
improve performance in some cases, the trade-off is worth the reduced compiler complexity as
long as the obtained performance is still a high percentage of peak, and applies to a larger class of
structured grids.

86

The blocking is shown in Figure 10.4. A grid is decomposed into core blocks, each of which is
further decomposed thread blocks and into register blocks. Each thread block is often small enough
to fit into cache, so further cache blocking optimizations that target per-thread caches are generally
not helpful, although at extreme sizes, this may change. At the lowest level, register blocks allow
the computation to exploit registers (including SIMD) by explicitly exposing inter-iteration reuse
and potential vectorization opportunities; this kind of blocking is implemented by unrolling the
loops explicitly so the compiler can see the explicit reuse.

For parallelism, we use OpenMP to distribute the core blocks over the processors. As shown
in the figure, the grids are never subdivided in the unit-stride dimension, because such blockings
interfere with hardware prefetchers [61]. Furthermore, each thread block only reads from adjacent
thread blocks, which allows us to exploit page placement policies on systems with non-uniform
memory access (NUMA) to ensure as little communication as possible between memory controllers.

Currently, many of the optimizations are not applied when the dimensionality of the grid is less
than three. In particular, 2D structured grid computations are only parallelized, not blocked, since
the parallelization implicitly blocks the computation, and further blocking is usually not beneficial.
In addition, 1D grids are not even parallelized, because this interferes with prefetcher performance
and rarely speeds up computation.

Further optimizations could be implemented in the DSEL compiler. Although the incremental
increase in performance could be low, further levels of blocking may be beneficial. Most of the
current optimizations target memory-bound structured grid computations; additional optimizations
targeting compute-bound kernels could be implemented, including explicit vectorization (often,
compilers are unable to vectorize code due to possible dependencies). Such optimizations are a
subject of possible future work.

For stencils with multiple timesteps, we use a parallel variant of the time-skewing stencil
algorithm [122]. Our version subdivides the timespace of the computation into blocks, then works
on individual blocks together; these blocks are further cache blocked using the same strategy as
single-timestep computations. This avoids synchronizations that are required if each thread works
on separate time-space blocks, but may limit the effectiveness of our parallelization. Currently, only
3D or higher-dimension kernels are optimized using time skewing.

10.3.1 Auto-tuning
Sepya leverages Asp’s auto-tuning support. For the blocking strategies we implement for both single-
and multi-timestep computations, the DSEL compiler creates a large number of parameterized
variants, each with a different combination of optimizations. For a typical 3D test case, the number
of variants is over 200.

Currently, the only search strategy implemented is the one from Asp: exhaustive search. Because
the search is online, a different variant is run each time a kernel is called until all have been run,
after which the fastest one is always used. More intelligent search strategies could reduce the search
space.

10.3.2 Data Structure
To facilitate possible data structure transformations, we restrict the input and output data structures
for our kernels to be instances of the provided StencilGrid class. Instances of this class provide

87

Kernel Dimensionality Connectivity Boundaries Unoptimized OI
Laplacian 3D Rectahedral Constant 0.20
divergence 3D Rectahedral Constant 0.14
gradient 3D Rectahedral Constant 0.11
hex-divergence 3D Hexahedral Constant 0.33
tri-smooth 2D Triangular Constant 0.09
bilateral-r1 3D Rectahedral Constant >1†

bilateral-r3 3D Rectahedral Constant >1†

Table 10.3: Test structured grid kernels used in this study. Recall that Operational Intensity (OI)
is defined as ops

bytes
. Those marked with † are approximate due to modulo and integer conversion

operations.

pure Python implementations of the various iterators and functions used in structured grid kernels.
This also allows the kernels to run even in the absence of translation and compilation, since we
provide methods in our class that enable execution. In addition, we restrict the elemental datatypes
to a subset of those supported by NumPy [88]: integers and double- and single-precision floating
point numbers. These restrictions allow the compiler to generate typed C++ code from untyped
Python, since the elemental types are known.

One major optimization for multi-socket machines is to exploit default page placement policies
that dictate that pages will be pinned to memory controllers that first “touch” them on NUMA
machines. When such a machine is detected, the default NumPy memory allocator is not called;
instead, we generate C++ code that touches data carefully to ensure the page placement corresponds
to the execution units that will perform the computation. This reduces unnecessary inter-socket
communication due to misplaced memory pages.

We also implement padding of the data structures to ensure accesses occur at cache line
boundaries. This decreases unnecessary cache traffic, and can also ensure that the code is more
easily vectorizable by the optimizing backend C++ compiler.

10.4 Evaluation
In this section, we evaluate the obtained performance of the structured grid DSEL on a set of
kernels obtained from actual applications. We then outline productivity gains due to expressing
computations in a high-level manner, and show some possible improvements to the auto-tuning
search.

10.4.1 Test kernels & Other DSL systems
We evaluate obtained performance by comparing our DSEL with Pochoir [105], an external stencil
DSL that uses a parallel variant of the cache-oblivious stencil algorithm [40]. Written in Haskell, the
Pochoir compiler is used to transform code in a C++ like DSL into a parallel version that uses Cilk
Plus. The implemented algorithm can take advantage of multi-timestep computations by blocking
in both time and space.

88

Implementation Output Approx
DSL Type Language Language Parallelism LoC
Graphite Compiler C - - 9300

Infrastructure
Pochoir External Haskell C Cilk Plus 7280
Sepya Embedded Python C++ OpenMP or Cilk Plus 1100

Table 10.4: Summary of structured grid systems compared in this chapter.

Figure 10.5: Example application of a bilateral filter. Left: a 2D slice of the input 3D dataset.
Center: same 2D slice after applying a 3D bilateral filter with r = 1. Right: same 2D slice after
applying a 3D bilateral filter with r = 3.

The two DSL systems are compared with results obtained by using Graphite [94], which
provides compiler support for optimizing stencil-like loops in the Gnu Compiler Collection using the
polyhedral model. The polyhedral model transforms nested loops into polyhedra with dependence
information, and uses this abstraction to determine an efficient and correct traversal, including
parallelization. A summary of features of the three systems is shown in Table 10.4.

The set of test kernels is summarized in Table 10.3, including dimensionality and operational
intensity. The kernels are run with sizes of 40962 and 2563 for 2D and 3D respectively, not including
ghost zones. Some salient features of the kernels are described below.

Laplacian, Divergence, Gradient. These are three standard 3D kernels from the literature,
which are normally bound by memory bandwidth according to the Roofline model. Because they
vary in the number of input and output grids, each has different operational intensity. The Laplacian
kernel is suitable for running for multiple timesteps.

Bilateral Filter. The 3D bilateral filter kernel comes from a medical imaging application and is
used to reduce noise and enhance important features in magnetic resonance imaging (MRI) of the
brain [77]. Unlike a Gaussian filter, the bilateral filter combines spatial and signal weights to create
an edge-preserving smoothing filter. Our application requires applying the filter with varying radii
to highlight features of different sizes; an example of applying the filter to actual MRI images is
shown in Figure 10.5. We use r = 1 and r = 3 filter radii, which have quite different operational

89

 0

 5

 10

 15

 20

 25

 30

First Others

Ti
m

e
 (

s)

Breakdown of Time for Structured Grid

Total: 0.0667

instantiation
generation

compile
load_module

execution

Figure 10.6: Breakdown of overheads for the structured grid DSEL, using the 3D Laplacian kernel
as an example. On first load, over 6 seconds are spent on generating the large number of optimized
variants, and over 20 seconds are spent invoking the compiler. For subsequent runs, instantiating
the class and loading the already-compiled module takes a negligible amount of time due to caching
the compiled code.

intensity; at r = 1, the filter is a 27-point stencil, while at r = 3 it becomes a 343-point stencil. In
both cases, there is so much computation that the kernels are bound by computation rate.

Hexagonal Divergence, Triangular Smoother. These are both 2D kernels, one of which
comes from a next-generation climate simulation code, and the other from a proprietary application.
The primary purpose of selecting these kernels is to see how the various structured grid systems
fare for non-rectahedral topologies. Like most of the test kernels, these are also bound by memory
bandwidth performance.

10.4.2 Breakdown of Execution Time
Compared to a statically-compiled language, the dynamic nature of the SEJITS approach incurs
some overheads due to code generation, compilation, and loading a compiled dynamic link library
into the Python interpreter. Figure 10.6 shows the relative costs of each overhead for both the initial
run, and for subsequent invocations of the interpreter. Note that there is zero overhead once the
library has been loaded.

90

 0.1

 1

 10

 100

 1000

 10000

Laplacian div grad bilat(r=1)

S
p

e
e
d

u
p

Structured Grid Speedup Over Python (postbop)

Figure 10.7: Performance for selected kernels versus pure Python on Postbop.

By far, the largest cost, 21 seconds, is due to running an external compiler, which is not
optimized for speed. Using minimal compilers such as the Tiny C Compiler (TCC) [12] is one way
to mitigate this cost, but would come at a large cost to performance, since much of the time taken
by the compiler is due to optimization passes. Generating the large number of variants (in this case,
227 variants) takes about 6 seconds. Loading in the library, which is done using Python’s standard
import, takes over 36ms, and the execution in this case is 27ms.

For the rest of this chapter, these overheads are not reported, since they occur only the first time
the computation is transformed and compiled, or occur at module load time, which is not part of the
execution. Furthermore, we do not report auto-tuning time; the idea is that after many executions
(on the order of 200 for most of these kernels), the kernel will always use the fastest version, so we
only report that version’s performance as it represents the steady state.

10.4.3 Single Iteration Performance
Performance relative to NumPy implementations of the structured grid kernels is shown in Fig-
ure 10.7 on Postbop, the single-socket Intel Core i7 test machine. Sepya obtains performance
that is 2–3 orders of magnitude faster than pure Python for every kernel, demonstrating the high
performance possible with the SEJITS approach. For the rest of this section, we compare obtained
performance with that of Pochoir and Graphite.

A summary of performance relative to Graphite is shown in Figure 10.8 on Postbop for both our

91

 0.1

 1

 10

 100

Laplacian div grad bilat(r=1) bilat(r=3) hex-div trismooth g.mean

S
p

e
e
d

u
p

Structured Grid Speedup Over Graphite (postbop)

dsl
pochoir

Figure 10.8: Performance for single-iteration kernels on Postbop.

92

 0.1

 1

 10

 100

 1000

Laplacian div grad bilat(r=1) bilat(r=3) hex-div trismooth g.mean

S
p

e
e
d

u
p

Structured Grid Speedup Over Graphite (boxboro)

dsl
pochoir

Figure 10.9: Performance for single-iteration kernels on Boxboro.

93

 0.1

 1

 10

 100

Laplacian div grad bilat(r=1) hex-div trismooth g.mean

S
p

e
e
d

u
p

Structured Grid Speedup Over Graphite (hopper)

dsl

Figure 10.10: Performance for single-iteration kernels on Hopper.

94

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Laplacian div grad hex-div trismooth g.mean

Fr
a
ct

io
n
 o

f
Pe

a
k

Structured Grid Fraction of Peak Performance (postbop)

dsl
pochoir

Figure 10.11: Performance as fraction of Roofline peak for single-iteration kernels on Postbop.

stencil DSEL and Pochoir. For all but one kernel, Sepya outperforms the polyhedral framework
in Graphite. Relative to Pochoir, Sepya is able to obtain higher performance in every case due
to our use of auto-tuning and cache-aware single-iteration optimizations. In contrast, Pochoir
concentrates more on multi-timestep optimizations. In addition, Pochoir is hampered by its very
poor performance for the bilateral filter, regardless of radius. The geometric mean of speedup
relative to Graphite is about 2.37× for our DSEL, while Pochoir’s performance is about 0.55× that
of Graphite on this test machine.

On Boxboro, with its 40 cores and 10 sockets, Sepya performs even better relative to Graphite.
Figure 10.9 shows the performance relative to GCC’s polyhedral framework. In every case, our
DSEL outperforms both Graphite and Pochoir, leading to a geometric mean of speedup of 19.9×
compared to Pochoir’s 1.52× speedup. NUMA-aware allocation is the most important optimization
on this platform, and since neither Pochoir nor Graphite implement it, their performance suffers
greatly.

For the AMD-based Hopper machine, we tested the available compilers and use the installed
Intel compiler as it obtains the best performance for our studied structured grid kernels. The
performance for our test kernels on Hopper is shown in Figure 10.10. Because there is no working
Cilk Plus runtime on the system, we do not report Pochoir results, and, in addition, the Intel compiler
was unable to compile the bilateral filter with radius 3 due to an internal error. Overall, the DSEL
obtains a geometric mean speedup of 19× over Graphite.

To compare the obtained performance with the best possible performance, we use the Roofline

95

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Laplacian div grad hex-div trismooth g.mean

Fr
a
ct

io
n
 o

f
Pe

a
k

Structured Grid Fraction of Peak Performance (boxboro)

dsl
pochoir

Figure 10.12: Performance as fraction of Roofline peak for single-iteration kernels on Boxboro.

96

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Laplacian div grad hex-div trismooth g.mean

Fr
a
ct

io
n
 o

f
Pe

a
k

Structured Grid Fraction of Peak Performance (hopper)

dsl

Figure 10.13: Performance as fraction of Roofline peak for single-iteration kernels on Hopper.

97

Kernel Read Streams Write Streams
Laplacian 2 1
divergence 4 1
gradient 4 3
hex-divergence 5 1
tri-smooth 2 1

Table 10.5: Read and write streams for memory-bandwidth bound kernels, including read streams
for the output grids. The kernels are implemented using a read of the output grid as well.

model to determine the expected attainable performance. For most of these kernels (with the
exception of the bilateral filters), the Roofline model shows that they are bound by off-chip memory
bandwidth. Furthermore, on these architectures, memory bandwidth varies by the number of read
and write streams in the computation; for example, a single write stream to memory will obtain
lower bandwidth than multiple read streams.

We use a customized version of the STREAM [76] memory bandwidth benchmark to determine
obtainable bandwidth. Our customized version matches the number of streams for each structured
grid kernel, and executes using OpenMP parallelization. Table 10.5 summarizes the memory streams
of each structured grid kernel and the proxy customized STREAM benchmark used for calculating
attainable memory bandwidth. Arrays are sized larger than the largest cache, and initialized using
NUMA-aware initialization. Note that in calculating the memory bandwidth obtained for the
different stencils, we must include the ghost zones in both the read and write grids, because they are
actually read and written to, due to the cache line granularity of reads and writes from the memory
system.

Performance as a fraction of Roofline peak for the memory bandwidth bound kernels on Postbop
is shown in Figure 10.11. On this single-socket architecture, the kernels perform at very high
fractions of peak obtainable performance, with a geometric mean of 93% of peak, compared to
Pochoir’s 42% of peak. This is an incredibly high fraction of peak, and points to little value in
further optimizing the code generator for single-socket machines.

On Boxboro, as shown in Figure 10.12, the geometric mean is 95% of peak, compared to
Pochoir’s 9% of peak. The performance once again is exceptional, and displays the benefits of
controlling both the data structure and the computation; this allows us to match the NUMA-aware
allocation of the grids with their NUMA-aware computation.

Figure 10.13 shows the performance of the memory-bound kernels as a fraction of memory-
bandwidth peak on Hopper. Note that for many of the kernels, the memory subsystem is operating
at 98–99% of obtainable peak. However, for the hexahedral divergence kernel, performance is
especially poor due to poor SIMDization. Nevertheless, the memory bound kernels obtain a
geometric mean of over 83% of peak.

10.4.4 Multiple Iteration Performance
Sepya implements both single and multiple timestep algorithms, blocking in both space and time for
the latter. Pochoir also implements space-time blocking for multiple timestep algorithms using its
cache oblivious approach. Figure 10.14 shows the performance of the 3D Laplacian on a 2583 grid

98

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6 7 8

R
e
la

ti
v
e
 S

te
n
ci

ls
/S

e
c

Laplacian Performance for Multiple Timesteps (postbop)

dsl
pochoir

graphite

Figure 10.14: Multiple iteration performance on Postbop for the 3D Laplacian kernel on a 2583

grid. Performance is normalized to one iteration of Graphite.

99

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8

R
e
la

ti
v
e
 S

te
n
ci

ls
/S

e
c

Laplacian Performance for Multiple Timesteps (boxboro)

dsl
pochoir

graphite

Figure 10.15: Multiple iteration performance on Boxboro for the 3D Laplacian kernel on a 2583

grid. Performance is normalized to one iteration of Graphite.

100

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8

R
e
la

ti
v
e
 S

te
n
ci

ls
/S

e
c

Laplacian Performance for Multiple Timesteps (hopper)

dsl
graphite

Figure 10.16: Multiple iteration performance on Hopper for the 3D Laplacian kernel on a 2583

grid. Performance is normalized to one iteration of Graphite.

101

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

32^3 64^3 128^3 256^3 512^3

R
e
la

ti
v
e
 S

te
n
ci

ls
/S

e
c

Structured Grid Performance Scaling with Grid Size (postbop)

laplacian
divergence

gradient
bilateral-r1
bilateral-r3

Figure 10.17: Performance as grid size is varied for the 3D kernels on Postbop. Here, performance
is normalized to that obtained at 2563 (not counting ghost zones).

on Postbop, normalized to a single iteration of Graphite. On this machine, the relative performance
of the DSEL continues to increase, due to the space-time blocking, which reduces the overall cache
misses by keeping data in cache while performing multiple timesteps of the calculation. Pochoir’s
relative performance, though greater than Graphite, levels off after 7 timesteps.

Performance for multiple timesteps on Boxboro is shown in Figure 10.15. The performance
difference seen for a single timestep actually expands as we increase the number of timesteps, as
Pochoir and Graphite both suffer from NUMA effects. In this case, both Pochoir and our DSEL
show continuing performance increases as the number of timesteps increases, but Pochoir remains
low relative to our DSEL.

On Hopper, as shown in Figure 10.16, we see results similar to Boxboro. The relative stencils
per second is still increasing at the largest number of timesteps, and the gap between Graphite’s
non-time-blocked algorithm and our time skewing implementation is increasing. Pochoir results are
not available due to the lack of a working Cilk Plus runtime on Hopper.

10.4.5 Grid Size Scaling
Our cache blocking scheme used in the DSEL compiler attempts to eliminate capacity misses caused
by grids that are too large to fit in cache. One way to characterize its effectiveness is to look at how
performance changes as grid size increases. Figure 10.17 shows the performance as grid size is

102

increased, normalized to our 2563 (not including ghost zones) test case. As expected, performance
increases until it reaches a limit at about 1283 and further increases in grid size affect little change
on performance, thanks to blocking. Similar results occur on our other two test machines.

10.4.6 Expressibility
It is important to compare what kinds of structured grid computations can be expressed in the
systems under study. Of the three systems, Graphite is the most flexible in terms of what kinds of
computations can be expressed. Graphite can optimize almost any (perfect and imperfect) nested
set of loops using the polyhedral method, as long as it can determine the dependence information.

Sepya and Pochoir both only handle Jacobi-style structured grid kernels, with both requiring the
user to explicitly specify the stencil shape. In contrast, Graphite infers the dependence information
from the program text. Pochoir and Sepya both require integer offsets in the stencil, disallowing
variables in the stencil shape. Both also require the input and output grids be the same dimensionality
and size (although both allow for lookups into grids with other dimensionality for weights); this
precludes the two systems from expressing multigrid prolongation or restriction or other kinds of
commonly-used kernels that have different sizes for the inputs and outputs.

Pochoir allows expressing boundary calculations and optimizes them by inlining them into the
grid traversal. In contrast, Sepya currently does not optimize boundary calculations (except constant
boundaries) and runs them slowly in serial pure Python.

Overall, the two DSEL systems express and execute similar types of structured grid problems,
despite their different parallelization strategies and the fact that Sepya uses auto-tuning and is
embedded in a high-level language.

10.4.7 Programmer Productivity
Productivity is difficult to measure without user studies, but lines of code are often used as a rough
proxy. Comparing Graphite to our structured grid DSEL, we find that most kernels are about the
same length in both, except for the bilateral filter kernels, which we can express more concisely
by using Python’s powerful standard library to define the neighbors. However, when compared
to Pochoir, defining the structured grid kernel is much shorter in our DSEL, both thanks to our
domain-specific constructs and thanks to the conciseness of Python relative to C++ .

The productivity of the performance programmer, who designs and implements the optimization
frameworks, is also important. As seen in Table 10.4, our DSEL is one seventh the size of Pochoir
and even smaller relative to Graphite. Much of this is due to our use of the Asp infrastructure, which
handles auto-tuning as well as defining many commonly-used transformations. Thus, our DSEL
demonstrates that this framework-based approach leads to productivity for both the performance
programmer and the DSEL user.

10.4.8 Improving Auto-tuning Search
The auto-tuning search provides up to 4× increase in performance. However, the large number
of candidate implementations means the search takes many runs to finish before the auto-tuner
decides on the best implementation. In order to limit this combinatorial explosion, we first eliminate
parameter sets that are unlikely to yield good performance; for example, we eliminate block sizes

103

that are too small in the unit-stride dimension as previous work has shown such blockings are never
close to optimal, due to their poor prefetching performance [60].

Asp should support more intelligent searches using machine learning. However, even in the
absence of such infrastructure support, we can explore whether even slightly more intelligent
searches would result in quickly converging to the best without trying all the possible variants.
Previous work in other domains [116] has shown that auto-tuning search can be a “needle-in-
haystack” type of problem; that is, the best variant may be surrounded by poorly-performing
variants. However, the serial performance model in [60] gives hope that obtaining local maxima
of performance is possible using a simple hill climbing or gradient descent algorithm; these local
maxima can be close to optimal.

We use a variant of hill climbing called random-restart hill climbing. The search proceeds by
selecting a random start location in the tuning space; subsequent runs search the neighborhood of
this location for a variant that performs better. If one is found, the “vector” in the tuning space
pointing from the original to the faster variant is followed stepwise with each subsequent call of the
stencil. If no faster variant is found in the neighborhood of the central location, a new starting point
is chosen at random. The search continues until either a set number of variants have been explored
or no more variants are available.

Figures 10.18–10.20 shows the results of the hill climbing search on Postbop. For most kernels,
we can obtain 98% of the best variant’s performance by searching 25% of space in the worst case;
much of this is due to our pre-pruning of variants that will definitely not yield high performance.

Figures 10.21–10.22 show the results of applying the random-restart hill climbing algorithm
to find best parameter values on Boxboro. Due to the NUMA nature of the machine, incorrect
parameter selections can have a very large impact on performance. In the worst case, up to 50%
of the space must be searched to get within 90% of the best obtained performance, but this is still
better than exhaustively searching the entire space.

10.5 Future Work
The previous section describes a potential way to improve our auto-tuning strategy by using more
intelligent search. In this section, we outline some further improvements that can be made to our
DSEL and compiler to increase performance as well as expressibility.

10.5.1 Language Extensions
The current restriction that input and output grids have the same topology prevents expressing

some important structured grid algorithms, namely kernels present in multigrid and Adaptive Mesh
Refinement (AMR). In these algorithms, information is conveyed from one grid to another, and
grids may have different connectivities. For example, in the prolongation kernel in multigrid, the
output grid has more points than the input grid (usually a 2× as many in each dimension).

Figure 10.24 shows example prolongation and restriction operators, using grid stepping con-
structs inspired by the Titanium [124] parallel programming language, in which the interior iterators
can have a stride. For example, accessing a grid using a stride of 2 would yield every other point.
At the same time, the neighbor iterator still accesses neighbors based on the indexing of the grid
passed to it. A second extension allows iterating over neighbor points of the output grids. Because

104

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (postbop-laplacian)

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (postbop-divergence)

Figure 10.18: Hill climbing experiment on Postbop, for 3D kernels running on a 2563 grid for a
single iteration. The top line shows the average of 25 runs of the experiment, while the bottom line
shows the worst run.

105

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (postbop-gradient)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (postbop-bilateral-r1)

Figure 10.19: Hill climbing experiment on Postbop (continued), for 3D kernels running on a 2563

grid for a single iteration. The top line shows the average of 25 runs of the experiment, while the
bottom line shows the worst run.

106

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (postbop-bilateral-r3)

Figure 10.20: Hill climbing experiment on Postbop (continued), for 3D kernels running on a 2563

grid for a single iteration. The top line shows the average of 25 runs of the experiment, while the
bottom line shows the worst run.

107

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (boxboro-laplacian)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (boxboro-divergence)

Figure 10.21: Hill climbing experiment on Boxboro, for 3D kernels running on a 2563 grid for a
single iteration. The top line shows the average of 25 runs of the experiment, while the bottom line
shows the worst run.

108

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (boxboro-gradient)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (boxboro-bilateral-r1)

Figure 10.22: Hill climbing experiment on Boxboro (continued), for 3D kernels running on a 2563

grid for a single iteration. The top line shows the average of 25 runs of the experiment, while the
bottom line shows the worst run.

109

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 B

es
t P

er
fo

rm
an

ce

Fraction of Possible Variants

Hill Climbing Auto-tuning (boxboro-bilateral-r3)

Figure 10.23: Hill climbing experiment on Boxboro (continued), for 3D kernels running on a 2563

grid for a single iteration. The top line shows the average of 25 runs of the experiment, while the
bottom line shows the worst run.

110

from stencil_kernel import *

class Prolongation2D(StencilKernel):
def kernel(self, fine, coarse):
for x in fine.interior_points(2,2):
for y in self.neighbors(fine, x, 1):
fine[y] = coarse[x]

class Restriction2D(StencilKernel):
def kernel(self, coarse, fine):
for x in coarse.interior_points():
for y in self.neighbors(fine, x, 1):
coarse[x] += 0.25 * fine[y]

Figure 10.24: Demonstration of using extensions to Sepya to express multigrid prolongation and
restriction.

the extensions preserve our current restriction of disallowing right-hand-sides to access any points
in the output grid except the point written to, the parallelization strategy can still exploit reordering
the writes. We are also working on allowing Gauss-Seidel-style stencils in our language, where
the input and output grids are the same. The traditional parallelization of such schemes involves
dividing the points into separate sets that can be updated without dependencies (e.g. red-black); we
are working on encoding this in our language to avoid the need for analysis.

10.5.2 Opportunities for Further Optimization
Unlike our proof-of-concept tuner, the current structured grid DSEL does not output GPU code.
Future extensions to the compiler could generate code appropriate for GPUs, either using OpenCL
or CUDA as the backend, both of which are supported by Asp.

Currently, boundary conditions are not optimized in our DSEL. Computations on boundary
points occur in serial, and can incur a huge performance hit relative to the interior. Our code
generator can be extended to generate boundary conditions in one of two ways: either the boundary
calculation can be embedded into the grid traversal, which has the advantage of not incurring extra
cache traffic, or they can be calculated in a separate parallel loop, which has the advantage of not
require conditionals in the inner loop. Both approaches need to be explored to determine which is
best.

Our auto-tuner and code generator only implements a subset of optimizations from [121]. For
compute-bound kernels, it is important to implement others, including SIMDization and other
optimization strategies that can improve the performance of such kernels.

10.6 Summary
This chapter presented Sepya, our structured grid DSEL and compiler, built using the Asp framework,
which yields a high percentage of peak performance across a large number of structured grid kernels.
The auto-tuning employed in the DSEL compiler is simpler than that in Chapter 9 yet still yields
near-peak performance. The DSEL and compiler described here is more productive for performance

111

experts to build, thanks to using the Asp infrastructure. In addition, users of Sepya can express their
computations in few lines of code, yet still obtain over 80% of peak performance across machines
and across kernels. The success of this DSEL points to the potential of the SEJITS approach for
changing the paradigms of performance programming.

112

Chapter 11

Graph Algorithms

Graph algorithms are computations that operate on a graph, a mathematical abstraction consisting
of a set of vertices as well as edges that connect pairs of vertices. This class of algorithms occurs
frequently in a wide variety of domains, from within compilers to analyzing relationships between
social networking users.

Graphs can be undirected or directed, meaning the edges in the graph have some notion of
direction and thus distinguish between the two vertices being connected. For an edge in a directed
graph, one vertex is the source and the other is called the sink. Figure 11.1 shows an example of a
simple directed and undirected graph.

In this chapter, we examine some applications of graph algorithms as well as some basic building
blocks for such algorithms in Section 11.1. Section 11.2 outlines some common representations
of the graph data structure and related programming models. In Section 11.3 we describe the
Knowledge Discovery Toolbox, the Python package for graph algorithms used as a basis for our
DSEL compilers. In Section 11.4, we describe a Roofline model for graph computations that use
the linear algebra representation, and Section 11.5 summarizes.

1!

2!3!

4!5!

1!

2!3!

4!5!

Figure 11.1: Example of a directed graph (left) and an undirected graph (right).

11.1 Applications of Graph Algorithms
Graph algorithms are used in a huge number of applications, spanning all domains of computer
science. Indeed, the graph data structure is so essential it is often taught as part of basic computer
science courses, and algorithms that operate on graph data structures are a massive topic of historical
and current research. Analysis of graphs that arise from network connectivity, social networking
relationships, search, and recommendation engines form a large part of modern usage of graph
algorithms.

113

Many applications operate on standard directed or undirected graphs, but others use special
types of graphs. These special graphs include directed acyclic graphs (DAGs, which are directed
graphs with no cycles), trees (connected acyclic directed graphs where each vertex has a parent and
zero or more child vertices), and hypergraphs (graphs in which many edges may exist between the
same vertices). Such specialized graphs are building blocks for many applications; for example,
compilers may use trees to represent program syntax internally.

Basic algorithms for graphs include Breadth First Search (BFS), Depth First Search (DFS),
algorithms for finding minimum spanning trees, and shortest-paths algorithms. Breadth First Search
and Depth First Search have similar structure, but result in different traversal order due to the
former’s use of a queue (ensuring vertices are processed in the order they are discovered) and the
latter’s use of a stack (which results in later vertices being processed before earlier ones). DFS and
BFS are building blocks for many other important graph algorithms.

Depth First Search is a building block for topological sorts on DAGs and for finding strongly
connected components (that is, maximal sets of vertices that, for each pair u, v both u is reachable
from v and v is reachable from u). Breadth First Search is used to build a wide range of algorithms,
including betweenness centrality (a measure of how important a vertex is to the structure of the
graph) and maximal flow. It is also the benchmark algorithm used to see how well modern machines
are at graph algorithms: the Graph 500 benchmark [28] uses BFS as its major component.

11.2 Common Programming Models
Graph algorithms use a variety of data representations and programming models, partially due to
the wide variety of domains in which these algorithms are used. The classical data structure is an
adjacency list, in which each vertex keeps a list of adjacent vertices (via pointers or indices into an
array). A second common data structure is the adjacency matrix, where the graph is represented
by a matrix, where the rows represent vertex id’s for the source and columns represent vertex
destinations (or vice-versa). Such matrices are symmetric if the graph is undirected.

Besides these canonical data structures, many others have been used in graph algorithm packages,
depending on the requirements of application domain. Regardless of data structure, a variety of
programming models exist for graph algorithms. In the next sections, we examine three common
programming models and compare implementations of Breadth First Search in each.

11.2.1 Visitor Programming Pattern
In the graph visitor programming pattern, an algorithm is expressed in terms of a visitor function
that is applied as each vertex is discovered. The input to the visitor is usually the discovered vertex.
During each visit, new vertices to visit may be queued or directly visited.

A Breadth-First Search in this programming model consists of a visitor function that records,
for each visited vertex, the “predecessor” vertex that added it to the visit queue. When no more
unvisited vertices remain, the tree induced by the predecessor vertices represents the output BFS
tree. Figure 11.2 shows Python pseudocode for the visitor in this programming pattern.

114

def visit(vertex, predecessor_id):
vertex.predecessor_id = predecessor_id

visit_queue.extend(vertex.neighbors)

Figure 11.2: Visitor function for Breadth First Search. The outermost loop is not shown, but usually
handles ensuring a vertex is only visited once as well as visiting vertices in the queue in order.

def vertex_func(v):
if v.messages:
for n in v.neighbors:
v.send_message(n, v.id)

v.predecessor = v.messages[0] # choose first

v.finish()

Figure 11.3: Vertex function for Breadth First Search. The outermost loop is not shown, but usually
executes the function for each non-finished vertex in the graph and handles communication between
supersteps.

11.2.2 Bulk-Synchronous Programming Model for Graph Algorithms
In the Bulk-Synchronous Programming Model (BSP [114]), typified by Google’s Pregel [75]
package and the GraphLab [73] package, users write a per-vertex function that runs at each
superstep until a global agreement is reached that the algorithm is finished. In each superstep,
vertices can send messages to other vertices or declare themselves finished. A message sent during
one superstep is available for the target vertex to process at the next superstep.

In this programming model, the vertex function simply sends messages to its adjacent vertices
to set their predecessor to the vertex. In addition, each vertex chooses one of its incoming messages
to be its predecessor and then signals that it is finished. After enough supersteps, each vertex has
recorded its predecessor vertex and the resulting tree represents the result of BFS. A pseudocode
version of a vertex function for BFS is shown in Figure 11.3.

11.2.3 Matrix Representation & the Linear Algebra Programming Model
The linear algebra programming model for graph algorithms treats the graph as a (sparse) matrix
and conceptualizes graph algorithms as sequences of linear algebra operations (such as sparse
matrix-vector multiply) using algorithm-specific semiring operations. Recall that a semiring is an
algebraic structure that consists of a set and two operations: addition and multiplication, where
addition is a commutative monoid and multiplication is a (possibly non-commutative) monoid.
In addition, multiplication has a zero element that is the same as addition’s identity element. In
contrast to a ring, semirings do not necessarily have an additive inverse.

Writing a graph algorithm in this programming model involves defining both the sequence of
linear algebra operations as well as the semiring operations used for each kernel application. Many
graph algorithms are amenable to being written in this manner, including Breadth First Search,
Betweenness Centrality, Maximal Independent Sets, and Shortest Paths (Bellman-Ford) [62].

The advantage of this approach is that casting graph algorithms as linear algebra operations
enables taking advantage of decades of optimization and tuning work that has been applied to the

115

linear algebra domain. Many libraries with a rich history exist for performing sparse linear algebra
operations on multicore and distributed computers (such as LAPACK [3] and ScaLAPACK [15]), and
extensive research in this area has explored a large optimization space. Potentially, high performance
graph algorithms can be written by leveraging this existing work with slight modifications for custom
semiring operations.

Breadth First Search in the Linear Algebra Programming Model

1!

2!3!

4!5!

. 1 . . . !
1 . 1 . . !
1 !
. 1 . . 1!
. 1 . . .!

0!
0!
3!
0!
0!

0!
3!
0!
0!
0!

A! x! b!

X! =!

0!
3!
.!
0!
0!

parents!

. 1 . . . !
1 . 1 . . !
1 !
. 1 . . 1!
. 1 . . .!

0!
2!
0!
0!
0!

2!
0!
0!
2!
2!

A! x! b!

X! =!

2!
3!
.!
2!
2!

parents!

Figure 11.4: Breadth First Search using linear algebra on a simple graph. The example shows BFS
starting from vertex 3; in this case, the search is finished after two steps.

To demonstrate how graph algorithms can be performed by composing linear algebra operations,
we will walk through an example of Breadth First Search on a simple graph. Figure 11.4 shows
a small graph, on which we will step through a BFS starting with vertex 3. The major operation
in the BFS is sparse matrix vector multiply (SpMV), with a special semiring that, for addition
returns the maximum input and for multiplication, simply returns the second input. In other words,
a+ b = max(a, b) and a× b = b. In addition, null entries in the matrix are not used in the SpMV,
so the semiring is not applied to them.

The algorithm begins by setting the x vector such that the start vertex’s corresponding entry is
set to its id. In this case, we set the entry in the third row to 3. Note that the matrix we use is the
transpose of the traditional adjacency matrix. After the first SpMV, the result vector has a value
of 3 for every vertex discovered in this first iteration; in this case, the only vertex discovered is 2.
The result is merged with the parents vector, which is the output of the algorithm; essentially, the
vector-vector operation here replaces the zero entries in the parents vector if the entry is nonzero in
the b vector.

116

At the second step (Figure 11.4, bottom), we set the entries corresponding to the newly-
discovered vertices to their ids (as we did with the initial vertex). Thus, we set the id for vertex 2 in
the x vector. After the second SpMV, all the vertices that are reachable from vertex 2 have an entry
of 2 in the result vector. Once again, we update the parents vector with this result. In this example,
that leads to all vertices being discovered, which ends the algorithm.

This simple example demonstrates how graph algorithms can be decomposed into linear algebra
operations. In BFS, we primarily use SpMV and a vector-vector operation, but other algorithms can
use matrix-matrix multiplication as well as other linear algebra primitives.

11.3 KDT: The Knowledge Discovery Toolbox
The Knowledge Discovery Toolbox (KDT) [74] is a Python package for high performance parallel
computations on graphs, designed for domain experts who are not computer scientists. Using the
package, scientists do not need to understand the underlying data structures or complex algorithms,
but can perform computations at a high level. The goal is for users of KDT to never need to write
any low-level code, and instead, perform all their computations in Python.

KDT is built on the Combinatorial BLAS [20], which is a C++ library for graph computations
using linear algebra representations for the graph and algorithms. Parallelism in the Combinatorial
BLAS uses the MPI library. CombBLAS includes structures for graphs as sparse matrices as well
as a small set of primitives that allow algorithms to be expressed as computations on matrices and
vectors using specialized algorithm-specific semirings.

Because KDT is not limited to small-world graphs, it targets computation on both single-node
highly-parallel shared memory systems as well as large, distributed clusters. Thus, much of KDT is
written as low-level C++ functionality and interfaces on top of the Combinatorial BLAS building
blocks for use from Python. Interfacing between Python and C++ is done using the SWIG [10]
framework.

The built-in graph algorithms in KDT are written in a mix of Python (for productivity reasons)
and C++ (for efficiency reasons). For a number of graph algorithms, the semiring operations used
are written in C++ since they are used extensively as building blocks in KDT. Furthermore, these
operations are type-specialized to operate with the included vertex and edge types. Currently, KDT
requires users to declare custom vertex and edge types in C++ , while limiting them to only two
types. In addition to the algorithms themselves, KDT contains functionality that allows users to
selectively apply the algorithms to a subset of the graph by specifying filters in Python that dictate
whether a given input edge or vertex is to be included. More on this functionality is covered in the
next chapter.

Because the algorithms that use Python in their innermost operations require serialized calls
into the interpreter, the performance can be much lower than desired. The SEJITS approach can be
used to mitigate these slowdowns. The domain-specific embedded languages for KDT in the next
chapter interject translated/compiled C++ code into the Python-C++ internal KDT interface.

117

11.4 Performance Modeling Issues for Graph Algorithms Us-
ing Linear Algebra

Roofline models for graph algorithms are highly dependent on the data structure and algorithm
under question. In this section, we summarize a Roofline model for Breadth First Search in KDT
and the Combinatorial BLAS, which was derived in [19].

For characterizing operational performance, the methodology is to simply run a BFS on a graph
that is small enough to fit into the processor caches of the machine under study; this is run a large
number of times to amortize any initial costs due to traffic from main memory. With this test, the
in-core performance limit is found.

Characterizing memory bandwidth requirements is somewhat more complicated. Memory
access patterns during BFS can be characterized into three regimes:

1. Streaming access, which is defined as accesses that occur to consecutive memory locations.
These result from accessing vertex pointers as well as when creating a vector for each frontier
before performing the sparse matrix vector multiply.

2. Stanza-like access, in which a few accesses to consecutive locations occur, followed by a jump
in access location. These occur due to accesses into the adjacency list; these are essentially
reads of some set stanza size, with subsequent stanzas being to completely different locations
in memory.

3. Random access due to updating the list of visited vertices and for accessing the edge data
structure from the graph structure. These accesses look like random accesses to locations in
memory, with no spatial or temporal locality.

For each of the access types, a modified STREAM benchmark can be written that characterizes
the memory bandwidth performance of each access type; based on this, a limit for performance due
to memory bandwidth requirements can be determined for a particular graph. The addition of edge
filtering changes the mix of kinds of access as well, altering the memory bandwidth limit.

Because the Roofline model is complex and highly data-dependent, we will generally compare
performance to a known baseline: graph algorithms using the C++ implementation inside KDT and
the Combinatorial BLAS. For a characterization of the filtering DSEL that compares against this
derived roofline limit, see [19].

11.5 Summary
Graph algorithms are in important class of computation for many areas of computer science, and,
due to increasing graph sizes, require high performance in order to be useful. Several programming
models exist for such algorithms, one of which is to cast them as linear algebra, an approach used
by KDT and the Combinatorial BLAS. In the next chapter, we build DSELs to accelerate KDT
while providing high-level programmability to the user.

118

Chapter 12

Domain Specific Embedded Languages For
High Performance Graph Algorithms in the
Knowledge Discovery Toolbox

In this chapter, we build two domain-specific embedded languages (DSELs) for the Knowledge
Discovery Toolbox graph algorithms package. Leveraging this existing framework for large-scale
graph algorithms in Python, we demonstrate how the SEJITS approach can be applied to existing
high-level software packages to mitigate slowdowns caused by using the high-level language. The
performance goals of the DSELs in this chapter are to match the performance of writing graph
operations in low-level languages, while preserving the productivity of writing in a high-level
language.

In Section 12.1, we build a domain-specific language for filtering semantic graphs when applying
existing graph algorithms. This allows users of KDT to selectively apply algorithms on graphs with
information on the edges. The DSEL is described in Section 12.1.2 and the performance of our
approach is evaluated in Section 12.1.3. Then, in Section 12.2 we build a DSEL for defining semiring
operations, enabling new algorithms to be developed for KDT without the need to write them in
C++ for performance. Section 12.3 outlines some next steps to extend the DSEL functionality
demonstrated in this chapter, and the chapter is summarized in Section 12.4.

12.1 A Domain-Specific Embedded Language for Filtering Se-
mantic Graphs

In large scale graph analytics, graphs vertices usually represent entities of interest while the edges
connecting them represent specific kinds of relationships. Such graphs are often referred to as
semantic graphs. In many cases, the user of a graph analytics package is interested in running
high-level algorithms such as betweenness centrality or reachability analysis on the subset of the
graph that denotes a specific kind of relationship or a specific subset of the entities, while ignoring
the other edges or vertices.

As a running example, consider a graph that maps Twitter relationships. In this graph, nodes
represent users and edges represent relationships; what kind of relationship is encoded in the edge
type. It is useful to use this graph to do queries, some of which care about certain edge types

119

class MyFilter(object):
def __call__(self, e):
if it is a retweet edge

return (e.count > 0 and
and it is before June 30

e.latest < strtoftime("2009-6-30")

Figure 12.1: Example of an edge filter in KDT. The filter object implements Python’s callable
convention.

only, without having to instantiate a new graph with other edges pruned. Such operations can be
performed either by pre-pruning the unwanted vertices and edges (and therefore creating a new
graph) before running the algorithms, or by filtering the graph on-the-fly— that is, checking each
vertex or edge before using it within the algorithm.

In this section, we build a Domain-Specific Embedded Language for on-the-fly filtering of
semantic graphs. The end result allows users to write Python filters expressing the edges they would
like to include without incurring large performance penalties due to the per-edge or per-vertex check.
Such filters can be applied to any algorithm in KDT in a transparent manner, by piggybacking on
existing KDT functionality.

12.1.1 Filters in the Knowledge Discovery Toolbox
In KDT, filters are expressed as Python callable objects. In most cases, this is either an instance of
a class that has a call () method, or is a Python lambda. An example of a filter is shown in
Figure 12.1.

The implementation of on-the-fly KDT filters works by applying the filter to each edge right
before calling the semiring operation on the edge, using an upcall into Python to run the filter
function. If the filter returns false, the semiring operation returns the semiring’s additive identity
(SAID), which the underlying CombBLAS operations then use as a trigger to not store the data item
in the result. This is because CombBLAS uses sparse data structures in which the SAID should
never be stored (similar to not storing zeros in usual sparse matrix formats such as Compressed
Sparse Row). In this way, the end result is as if the operation never occurred, both in terms of the
result and in terms of the returned data structure. The major drawback here is that the upcall into
Python is very expensive and occurs once for every single edge.

Materializing a filtered matrix in KDT means instantiating a matrix that has been pruned of
edges that do not pass the filter. Operationally, materializing just applies the filter to each edge
of a matrix before performing any operations, and a new matrix is constructed, made up only of
edges that pass the filter, while the original matrix is preserved. The major drawback of this is that
creating a large materialized graph can take a very long time and in fact may be impossible for
very large graphs due to memory size constraints. The upside is that once it is created, subsequent
operations no longer need to incur the overhead of an upcall per edge.

From the user’s perspective, most if not all of these implementation details are hidden. All they
need to do is write a filter and add it to the matrix. However, the performance hit is more than large
enough that users will notice the slowdown when filtering, especially if they use KDT algorithms
that have been implemented partially in C++ for speed.

120

Python!

C++!

KDT!

CombBLAS!

Python
Filter!

Python!

C++!

KDT!

CombBLAS!

Python
Filter!

C++!
Filter!

Translate!

Figure 12.2: Left: Calling process for filters in KDT. For each edge, the C++ infrastructure must
upcall into Python to apply the filter. Right: Using our DSL for filters, the C++ infrastructure calls
the translated version for each edge, eliminating the upcall overhead.

12.1.2 DSEL for Filters
By defining an embedded DSL for KDT filters, and then translating it to C++ , we can avoid
performance penalties while still allowing users the flexibility to specify filters in Python. In this
manner, the upcall to Python will be eliminated, and filtering will occur at the C++ level. We use
the Asp framework to implement our DSEL.

Our approach is shown in Figure 12.2. In the usual KDT case, filters are written as simple Python
functions. Since KDT uses the Combinatorial BLAS at the low level to perform graph operations,
each operation at the Combinatorial BLAS level must check to see whether the vertex or edge should
be taken into account, requiring a per-vertex or per-edge upcall into Python. Furthermore, since
Python is not thread-safe, this essentially serializes the computation in each MPI process. Though
the Combinatorial BLAS currently does not use shared memory parallelism, this serialization
prevents KDT from benefiting from such optimizations should they be implemented.

In this section, we define an embedded domain-specific language for filters, and allow users to
write their filters in this DSEL, expressed as a subset of Python with normal Python syntax. Then, at
instantiation, the filter source code is introspected to get the Abstract Syntax Tree (AST), converted
to an intermediate form, and then translated into low-level C++ . Subsequent applications of the
filter use this low-level implementation, sidestepping the serialization and cost of upcalling into
Python.

Now we define our domain-specific language and show several examples of filters written in
Python.

Semantic Model for Filters

Recall that in our approach, we first define the Semantic Model of filters, which is the intermediate
form of our DSEL. The Semantic Model expresses the semantics of filters, though its definition
looks similar to a syntax definition. After defining this, we then map pure-Python constructs to
constructs in the Semantic Model. It is this pure-Python mapping that users use to write their
filters, and it is instances of the Semantic Model that our backend code generators use to generate
C++ source.

In defining the Semantic Model, we must look at what kinds of operations filters perform. In
particular, vertex and edge filters are functions that take in one or two inputs and return a boolean

121

value. Within the functions, filters must allow users to inspect fields of the input data types, do
comparisons, and perhaps perform arithmetic operations with data fields. In addition, we want to
(as much as possible) prevent users from writing filters that do not conform to our assumptions,
have side effects, or otherwise are incorrect; although we could use analysis for this, it is much
simpler to construct the language in a manner that prevents users from writing non-conformant
filters. If the filter does not fit into our language, we run it in the usual fashion, by doing upcalls
into pure Python. Thus, if the user writes their filters correctly, they achieve fast performance, and
otherwise the user experience is no worse than before— the filter still runs, just not at fast speed.

The Semantic Model is shown in Figure 12.3. We have built this to make it easy to write filters
that are “correct-by-construction;” that is, if they fit into the Semantic Model, they follow the
restrictions of what can be translated. For example, we require that the return be provably a boolean
(by forcing the BoolReturn node to have a boolean body), and that there is either a single input or
two inputs (either UnaryPredicate or BinaryPredicate). These restrictions make code generation
straightforward.

Given the Semantic Model, now we define a mapping from Python syntax to the Semantic
Model.

Python Syntax for the Filter DSEL

Users of KDT are not exposed to the Semantic Model. Instead, the language they use to express
filters in our DSEL is a subset of Python, corresponding to the supported operations. Informally,
we specify the language by expressing a limited API that conveys what a filter must do and what
operations can be inside a filter: namely, a filter takes in one or two inputs (that are of pre-defined
edge/vertex types), must return a boolean, and is allowed to do comparisons, accesses, and arithmetic
on immediate values and edge/filter instance variables. In addition, to facilitate translation, we
require that a filter be an object that inherits from the PcbFilter Python class, and that the filter
function itself is a member function called call . This requirement of using a specific superclass
is one of the characteristics of DSELs written using Asp. From the perspective of a KDT user, this
looks similar to a standard Python API description.

The example KDT filter from Figure 12.1 is presented in SEJITS syntax in Figure 12.4. Note
that because a filter cannot call a function, we must use an instance variable to compare against
the timestamp; this instance variable, however, must be finalized before the filter call and cannot
be set by the filter. Even given our relatively restricted syntax and semantics, users can specify a
large class of useful filters in our DSEL. In addition, if the filter does not fit into our DSEL, it is still
executed using the slower upcalls to pure Python after issuing a warning to the user.

Interfacing with KDT

We modify the underlying C++ filter objects used by KDT’s Python/C++ bridge, which are in-
stantiated with pointers to Python functions, by adding a function pointer that is checked before
executing the upcall to Python. This function pointer is set by our translation machinery to point to
the translated function in C++ . When executing a filter, the pointer is first checked, and if non-null,
directly calls the appropriate function.

Compared to Combinatorial BLAS, at runtime we have the additional sources of overheads
relating to the null check and function pointer call. In addition, because this function call occurs

122

top-level node for a filter

UnaryPredicate(input=Identifier, body=BoolExpr)

BinaryPredicate(inputs=Identifier*, body=BoolExpr)

check assert len(self.inputs)==2

Expr = Constant

| Identifier

| BinaryOp

| BoolExpr

Identifier(name=types.StringType)

BoolExpr = BoolConstant

| IfExp

| Attribute

| BoolReturn

| Compare

| BoolOp

Compare(left=Expr, op=(ast.Eq | ast.NotEq | ast.Lt | ast.LtE | ast.Gt | ast.GtE), right=Expr)

this is for multiple boolean expressions

BoolOp(op=(ast.And | ast.Or | ast.Not), operands=BoolExpr*)

check assert len(self.operands)<=2

Constant(value = types.IntType | types.FloatType)

BinaryOp(left=Expr, op=(ast.Add | ast.Sub), right=Expr)

BoolConstant(value = types.BooleanType)

IfExp(test=BoolExpr, body=BoolExpr, orelse=BoolExpr)

this if for a.b

Attribute(value=Identifier, attr=Identifier)

the return value must provably be a boolean

BoolReturn(value = BoolExpr)

Figure 12.3: Semantic Model for KDT filters using SEJITS.

123

class MyFilter(PcbFilter):
def __init__(self, target_date):
self.target = strtoftime(target_date)

def __call__(self, e):
if it is a retweet edge

if (e.count > 0 and
and it is before the target date

e.latest < self.target):

return True
else:
return False

Figure 12.4: Example of an edge filter that the translation system can convert from Python into fast
C++ code.

First Run Subsequent
Codegen 545 ms -
Compile 4210 ms -
Import 32 ms 32 ms

Table 12.1: Overheads of using the filtering DSEL.

via a pointer into a dynamically loaded library, it incurs a higher overhead than a normal function
call. However, relative to the non-translated KDT machinery, these are trivial costs for filtering,
particularly compared to the penalty of upcalling into Python.

Overheads of code generation are shown in Table 12.1. On first running using a particular filter,
the DSEL infrastructure translates and compiles the filter in C++ ; most of the time here is spent
calling the external C++ compiler, which is not optimized for speed. Subsequent calls only incur
the penalty of Python’s import statement, which loads the cached library.

12.1.3 Experimental Results
Before presenting our experiment, it is important to characterize the size of the DSEL compiler
implementation, especially relative to the size of KDT. Table 12.2 shows the lines of code for KDT
and our filter DSEL. The DSEL implementation is quite small, consisting of small modifications to
KDT at the C++ level and a DSEL compiler implemented in Asp.

To test the behavior of SEJITS-enabled filtering in Python, we compare against using the
Combinatorial BLAS directly (that is, writing custom semirings in C++) and against using KDT’s
default filtering mechanism.

Python LOC C++ LOC
KDT 7009 8177
Filter DSEL 194 24

Table 12.2: Lines of Code for KDT and the Filter DSEL. Code generated by SWIG is elided from
the KDT line counts. Counts are generated using the CLOC tool [2].

124

struct TwitterEdge {

bool follower;

time_t latest; // set if count > 0

short count; // number of retweets

};

Figure 12.5: The C++ data structure for edges in these experiments. The edge type is encoded by
either setting follower true (in which case it is a following relationship) or by having count and
latest set, corresponding to the number of retweets and when the latest one occurred.

Parameter Value
Edge Factor 16

a 0.59
b 0.19
c 0.19
d 0.05

Table 12.3: R-MAT parameters used in this study. Note that an R-MAT graph of a particular scale
N has 2N vertices and approximately EdgeFactor × 2N edges.

The edge data structure used corresponds to our Twitter example, and is shown in Figure 12.5.
Edges in this graph encode the relationship between Twitter users; the two types of relationships
are following and retweeting. We use both real graphs from anonymized Twitter data as well as
synthetic R-MAT [72] matrices.

The R-MAT matrices are generated by KDT’s built-in R-MAT generator using parameters
shown in Table 12.3. Once a boolean matrix of a specific scale is generated, edge types are set
using a random number generator, and the data structure is converted to use our Twitter edge data
type. Edge types are generated to guarantee a particular filter permeability by weighting the random
number generator.

In addition to the synthetic data, we use graphs from anonymized Twitter data in which edges rep-
resent following and retweeting relationships. Specifically, an edge from vi to vj where follower
is set to true encodes user i follows user j. If there is an edge from vi to vj with count greater
than zero, the edge encodes the fact that user i has retweeted user j count times, with the latest
date recorded. The real data represents interactions that occurred in the period June to December

Vertices Edges
Tweet Follow Tweet&Follow

Small 0.5 0.48 65.3 0.3
Medium 4.2 14.2 386.5 4.8

Large 11.3 59.7 589.1 12.5
Huge 16.8 102.4 634.2 15.6

Table 12.4: Sizes (vertex and edge counts) in millions of different combined Twitter graphs. Data
courtesy Aydın Buluç.

125

2009. In order to use the data for scaling studies, we use subsets of the data based on time windows.
Statistics for the four subsets used are shown in Table 12.1.3. For the huge dataset, the amount
of memory required is dozens of GB for the graph alone, not including auxiliary data structures,
vectors, or MPI buffers. Unlike the synthetic data, the real Twitter data is directed, and we only
report numbers for runs of BFS that reach the largest strongly-connected components of the graphs,
in order to ensure the BFS touches a large portion of the graph.

Our performance goal is to obtain performance for the DSEL that is as close as possible to the
pure Combinatorial BLAS approach, but we expect some overheads. First-run overheads (shown
in Table 12.1) are elided in our performance evaluation, since they only occur the first time a
filter is instantiated. However, the DSEL approach does incur additional overheads relative to the
Combinatorial BLAS: there are two additional function calls for the filters, and these function calls
are to dynamically-loaded libraries, which result in approximately two extra cycles per call versus
function calls within the same module on the 64-bit x86 architecture. Since the function bodies are
very small, and the calls occur for every single edge in the graph, we expect this overhead to be
non-trivial.

Furthermore, on Hopper dynamic linking is not well-supported, resulting in very large overheads
for the first calls into a dynamic library as well as large performance variability due to loading these
libraries from a shared file system.

Figure 12.6 shows the performance of filtered Breadth-First Search on Boxboro and Hopper
for our synthetic runs as filter permeability is changed. On Boxboro, KDT with our filter DSEL
consistently outperforms pure Python filtering by 5 − −6×, greatly reducing the overhead of
filtering. Compared to the pure Combinatorial BLAS approach, our filtering DSEL is at most only
20% slower. On Hopper, the DSEL performance is about 5× faster than KDT, but is slower than
Combinatorial BLAS performance by up to a factor of 2.6×. Much of this slowdown is due to poor
dynamic loading performance on Hopper, but is also related to inter-compute node variability on
the large scale machine.

Filtered BFS performance on the real data sets is shown in Figure 12.7. On both Boxboro
and Hopper, the DSEL implementation closely tracks the performance of writing the filter into a
semiring at the Combinatorial BLAS level; the performance is indistinguishable between the two.
Compared to the current KDT filtering mechanism, the SEJITS approach is 4− 5× faster on both
machines. Thus, on real data, all of the overhead of using Python is mitigated.

Strong scaling performance for filtered Breadth-First Search on Boxboro is shown in Figure 12.8.
The Combinatorial BLAS shows a remarkable scaling performance of 35× on 36 processors, closely
matched by BFS using our filtering DSEL, which obtains 34×. KDT with Python filters obtains
less than 30× on 36 processors, which is still a good scaling number given the overheads inherent
in the implementation. The high level of parallel efficiency for KDT with SEJITS demonstrates
how our DSEL eliminates the overheads of using Python for filtering.

Strong scaling performance for filtered BFS on Hopper is shown in Figure 12.9. Again, the
Combinatorial BLAS implementation shows almost perfect scaling up to 1024 processors, but the
DSEL performance shows some variability due to limitations of Hopper. Nevertheless, in most
cases the strong scaling is relatively good and tracks the Combinatorial BLAS implementation.

126

 1

 10

 100

1% 10% 25% 100%

M
ea

n
B

FS
 T

im
e

(s
)

Filter Permeability

BFS Performance With Varying Filter Permeability (boxboro)

KDT (materialized)
KDT

KDT+SEJITS
CombBLAS

 0.1

 1

 10

 100

1% 10% 25% 100%

M
ea

n
B

FS
 T

im
e

(s
)

Filter Permeability

BFS Performance With Varying Filter Permeability (hopper)

KDT (materialized)
KDT

KDT+SEJITS
CombBLAS

Figure 12.6: BFS performance as filter permeability is changed. For Boxboro, the graph is R-MAT
scale 23 running on 36 cores, and for Hopper it is scale 25 running on 576 processors.

127

 0.1

 1

 10

 100

 1000

small medium large huge

M
ea

n
B

FS
 T

im
e

(s
)

Twitter Input Graph

BFS Performance on Real Twitter Data (boxboro)

KDT (materialized)
KDT

KDT+SEJITS
CombBLAS

 0.01

 0.1

 1

 10

small medium large huge

M
ea

n
B

FS
 T

im
e

(s
)

Twitter Input Graph

BFS Performance on Real Twitter Data (hopper)

KDT (materialized)
KDT

KDT+SEJITS
CombBLAS

Figure 12.7: Filtered BFS performance for the real Twitter datasets. For Boxboro, the runs use 36
cores, and for Hopper they use 576 cores.

128

 1

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (boxboro 1%)

KDT
KDT+SEJITS

CombBLAS
 1

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (boxboro 10%)

KDT
KDT+SEJITS

CombBLAS

 1

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (boxboro 25%)

KDT
KDT+SEJITS

CombBLAS
 1

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (boxboro 100%)

KDT
KDT+SEJITS

CombBLAS

Figure 12.8: BFS strong scaling performance as filter permeability is changed on Boxboro for
synthetic R-MAT matrices of scale 23. Note that runs are done with perfect square numbers of
processors due to restrictions in KDT.

129

 0.1

 1

 10

 100

 128 256 512 1024

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (hopper 1%)

KDT
KDT+SEJITS

CombBLAS
 0.1

 1

 10

 100

 128 256 512 1024

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (hopper 10%)

KDT
KDT+SEJITS

CombBLAS

 0.1

 1

 10

 100

 128 256 512 1024

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (hopper 25%)

KDT
KDT+SEJITS

CombBLAS
 1

 10

 100

 128 256 512 1024

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (hopper 100%)

KDT
KDT+SEJITS

CombBLAS

Figure 12.9: BFS strong scaling performance as filter permeability is changed on Hopper for
synthetic R-MAT matrices of scale 25. Note that runs are done with perfect square numbers of
processors due to restrictions in KDT.

130

12.2 A Domain-Specific Embedded Language for Defining
Semirings in Python

As described in Chapter 11, graph algorithms on graphs that use the linear algebra representation
consist mostly of standard linear algebra operations such as sparse matrix vector multiply (SpMV)
and vector-vector operations along with definitions for the two binary operations in the semiring.
Implementing different algorithms requires thinking about the algorithm in terms of these matrix
operations as well as defining the custom semiring operations for addition and multiplication.

Currently, in KDT these operations can be either defined as part of KDT’s interface with the
Combinatorial BLAS (in other words, in C++) or using Python callables (functions, lambdas, or
classes that implement a call method with the correct arity). In this section, we extend KDT’s
capabilities by introducing a second DSEL for such operations, allowing algorithm developers to
write their semiring operations in Python but mitigating the problems with the existing pure Python
approach, particularly the poor performance due to upcalls to Python.

12.2.1 Semirings in KDT
In KDT, semiring operations are used by matrix-vector and matrix-matrix operations, although the
same underlying abstractions are used for vector-vector operations. In particular, semirings and
vector operations use instances of the UnaryFunction or BinaryFunction C++ classes, which
can be called by SpMV or other C++ operations both in the Combinatorial BLAS as well as in
KDT’s C++ layer. The BinaryFunction particular class takes in two inputs (which can be any of
KDT’s built-in types) and returns a single output; in most cases, this output is of the same class as
one of the inputs. The BinaryFunction class is partially templated to deal with its polymorphic
nature. UnaryFunction is the analog for unary functions used in low-level operations in KDT.

In the implementation, Python callbacks are used to implement the function itself, and are
wrapped and called using SWIG. The inputs and outputs are casted to/from Python objects. Alterna-
tively, some commonly-used operations are implemented in C++ for efficiency. For example, the
semiring used in Breadth First Search (BFS) is the (min, select2nd) semiring, which returns
the minimum input for the add and for multiply, returns the second input (see Chapter 11 for an
example of BFS that uses a similar semiring), is defined in C++ since it is used as a building block
for many algorithms in KDT.

12.2.2 Domain-Specific Embedded Language for Semiring Operations
To define an appropriately-restricted DSEL for UnaryFunction/BinaryFunction objects that
are used in semiring operations, we first characterize some of the common patterns used for such
functions in KDT. The most commonly-used semiring operations simply return one of their inputs,
but another common pattern is to look at some property of the inputs (such as whether they are equal
to a number) and, based on this, either return one of the inputs or an immediate value. Finally, some
semiring operations perform the usual arithmetic operations, sometimes after querying properties of
the inputs.

Based on these common patterns, we define our DSEL using the intermediate representation in
Figure 12.10. The Semantic Model is surprisingly similar to the one used in our filtering DSEL

131

describe previously; this allows us to reuse much of the transformation infrastructure built for that
DSEL. However, note that we do not require a specific type of return statement like we do in the
filter DSEL.

The basic building blocks in the Semantic Model are enough to express the semiring operations
used in most of the algorithms included in KDT, including Breadth-First Search, Betweenness
Centrality, and PageRank [90]. Further functionality can be added if needed by future algorithms
implemented in KDT.

UnaryFunction(input=Identifier, body=Expr)

BinaryFunction(inputs=Identifier*, body=Expr)

Expr = Constant

| Identifier

| BinaryOp

| BoolConstant

| IfExp

| Attribute

| FunctionReturn

| Compare

Identifier(name=types.StringType)

Compare(left=Expr, op=(ast.Eq | ast.NotEq | ast.Lt | ast.LtE | ast.Gt

| ast.GtE), right=Expr)

Constant(value = types.IntType | types.FloatType)

BinaryOp(left=Expr, op=(ast.Add | ast.Sub | ast.And), right=Expr)

BoolConstant(value = types.BooleanType)

IfExp(test=(Compare|Attribute|Identifier|BoolConstant|BinaryOp),

body=Expr, orelse=Expr)

this if for a.b

Attribute(value=Identifier, attr=Identifier)

FunctionReturn(value = Expr)

Figure 12.10: Semantic Model for semirings.

12.2.3 Implementation of the DSEL
We follow a similar strategy to the filtering DSEL to implement dynamic translation and

compilation for UnaryFunction/BinaryFunction objects. Users create a new class that inherits
from our special PcbFunction class and implement a call method; this is the standard method
used by Python for callable objects. Then, on instantiation, the code contained in this method is
translated and compiled, using the intermediate representation to ensure the defined method is

132

class Select2nd(PcbFunction):
def __call__(self, x, y):
return y

class Min(PcbBinaryFunction):
def __call__(self, x, y):
if (x<y)
return x

else
return y

semiring = kdt.sr(Min(), Select2nd())

Figure 12.11: Example of using our DSEL to create a semiring for Breadth-First Search.

translatable and correct. Currently, users must pass in the input and output types during instantiation
because no attempt to infer types is made, though the DSEL could be extended to detect run-time
concrete types before specialization.

Note that the Semantic Model here restricts operations only to ensure that the translation
is correct. In other words, we do not attempt to determine whether the operations are in fact
commutative or otherwise will result in a correct semiring.

The translated code is compiled into a dynamically link library that contains a method which
instantiates a C++ instance of the appropriate C++ KDT class. In order to interface with KDT
properly, KDT’s underlying function classes are modified so that customized functions can be
inserted into the instances; these are just function pointers that are checked when the instance is
called. If the function pointers are non-null, the custom function generated by our DSEL is called;
otherwise, the usual KDT method is used. An alternative that was considered was to subclass
KDT’s C++ UnaryFunction/BinaryFunction, but this was rejected because it would force all
type specialization to occur at code generation time. The approach we chose is flexible enough to
handle further specializations during execution, if needed.

If at any point in the translation/compilation there is a failure, then the execution path resumes
using the usual KDT method of wrapping pure Python functions. Since our DSEL uses the same
interface as Python for callable objects, we simply pass the user-defined Python instance to the
existing KDT infrastructure after printing a warning that translation/compilation failed.

12.2.4 Experimental Results
Lines of code for the semiring operation DSEL is shown in Table 12.6. Because much of the
infrastructure for processing the Semantic Model is shared with the filter DSEL, the size of the
compiler is very small. This shows the productivity aspect of Asp: it enables writing very small
DSEL compilers that can effectively translate domain-specific Python code to low-level C++ .

To test the effectiveness of our DSEL approach, we first measure the performance difference in
the underlying sparse matrix-vector multiplication using the semiring operations used in Breadth
First Search for our Twitter data structure. We compare the performance of three different ways
to write semiring operations in KDT: defining all operations in Python, using a hand-written
C++ semiring (which is the default mechanism used for BFS in KDT), and using our DSEL to

133

KDT Pure KDT+C++ KDT+SEJITS
SpMV Semiring Python C++ C++
Prune Frontier (Op) Python Python C++
Prune Frontier (check) Python Python C++
Parent Update C++ C++ C++

Table 12.5: For the three BFS implementations in our experimental study, this table shows which
operations occur in which language. KDT+C++ is the default implementation used in the current
KDT release.

Shared Python C++
Semiring Op DSEL 82 104 38

Table 12.6: Lines of code for the semiring operations DSEL. Much of the translation infrastructure
is the shared with the filter DSEL, making the implementation quite small.

define semiring operations that are then translated into C++ .
We then compare performance for the full BFS using the three approaches. The algorithm we

use is the KDT implementation of Breadth First Search, which we customize to use the appropriate
semiring implementation, and run on synthetic Twitter datasets as before using the same parameters
for the R-MAT generator.

Finally, we also demonstrate the performance benefits by changing one of KDT’s built-in graph
algorithms to use our DSEL. The connected components algorithm uses a graph traversal similar
to BFS, and finds the set of connected components– that is, each subgraph that is connected but
does not connect to other vertices in the graph. Unlike the BFS, however, it operates only on
non-semantic edges. Furthermore, it repeats traversals until all vertices are part of a connected
component.

Breadth-First Search Results

Note that the KDT implementation of BFS uses several instances of Python functions wrapped
in C++ in order to perform the various operations. The semiring used for SpMV uses (min,
select2nd) built into the Combinatorial BLAS for the add and multiply, and the input and output
types are different for the two operations. In addition, the vector-vector operation that removes
discovered vertices from the frontier at each step uses a BinaryFunction as well as a binary
predicate, for which we leverage the DSEL in the previous section to translate into C++ . Finally, the
update to the parents vector uses a C++ function for indexing. Table 12.5 shows which operations
occur in which language for the three BFS implementations.

In Figure 12.12, we compare the performance of sparse matrix vector multiply with our three
implementations of the (min, select2nd) semiring. The SpMV calls the underlying semiring
for each operation. Performance results show excellent scaling for all three implementations, but
in absolute terms the C++ implementation and the DSEL-generated implementation outperform
the pure Python version by 2.45× at scale 22 and 2.12× at scale 23. There are some performance
differences between the C++ semiring and the DSEL version due to overheads of calling into
a dynamic-library function as well as overheads incurred by the check for whether a generated
function exists; this results in up to an 18% slowdown at low numbers of processors. Nevertheless,

134

 0.1

 1

 10

 100

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

Strong Scaling Performance (boxboro SpMV s22)

KDT (pure)
KDT+SEJITS

KDT+C++

 0.1

 1

 10

 100

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

Strong Scaling Performance (boxboro SpMV s23)

KDT (pure)
KDT+SEJITS

KDT+C++

Figure 12.12: Performance of sparse matrix vector multiply (SpMV) using three different im-
plementations of the (min, select2nd) semiring (strong scaling). These runs use a generated
R-MAT matrix of scale 22 (top) and scale 23 (bottom).

135

KDT Pure KDT+SEJITS
SpMV Semiring Python C++
Prune Frontier (Op) Python C++
Prune Frontier (check) Python C++
Parent Update C++ C++

Table 12.7: For the two connected components algorithms in our experimental results, this table
shows the languages used for each operation. Note that since the semiring is different from the BFS
semiring, it is not by default defined in C++ .

at the highest concurrencies, the performance is essentially the same. Thus, our DSEL for semiring
operations is able to eliminate all of the overhead caused by defining the operations in Python, for
the SpMV.

We expect this performance improvement to be less than that of the filter case, because in the
filter case, the actual edge payload (data) must be examined by the filter, while in this case, the data
carried on the edge is not touched. Thus, the overall data movement is less, giving less opportunity
to speed up the operations. The resulting speedup over Python for the semiring operation case,
however, is still impressive.

Figure 12.13 shows the performance results for running our Breadth First Search experiment on
Boxboro using an RMAT matrices of scale 22 and 23. BFS using our DSEL is 2.3× faster than
the pure Python version and even marginally outperforms the existing BFS (which uses semiring
operations defined in C++). With our DSEL, we are able to eliminate the overhead of defining the
semiring operations in Python, allowing users to write new algorithms completely at the Python
level without sacrificing performance.

Connected Components Results

The default version of connected components included in KDT uses a slightly different semiring than
the one used for BFS, and thus, the semiring is defined in Python instead of C++ . Table 12.7 shows
which operations occur in which language for the two connected components implementations we
compare.

Figure 12.14 shows strong scaling results on Boxboro for the connected components imple-
mentations, with time for copying and symmetrizing the matrices elided. On average, our DSEL
implementation is about 2× faster, and for some cases, up to 2.6× faster. These results show that
our work is applicable to many of the algorithms in KDT, and by simply changing each algorithm
to use our DSEL, we can obtain large performance improvements with little effort.

12.3 Future Work
Future work must address some limitations of the current infrastructure. Our implementations
of the DSELs do not automatically type-specialize for the different types present in KDT. Such
functionality is clearly desirable because it would allow the same Python code to work for all
possible types (instead of forcing users to specify types at filter/semiring instantiation time, and then
to use the appropriate instance), but would require integrating some kind of type inference (such

136

 1

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (boxboro s22)

KDT (pure)
KDT+SEJITS

KDT+C++

 1

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

BFS Strong Scaling (boxboro s23)

KDT (pure)
KDT+SEJITS

KDT+C++

Figure 12.13: BFS strong scaling performance on Boxboro using three different semirings: KDT
with pure Python semirings, KDT with our DSEL for semiring operations, and KDT using a
semiring hand-coded in C++. The graphs are generated RMAT matrices using scale 22 (top) and
scale 23 (bottom).

137

 10

 100

 1000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

Strong Scaling Performance (boxboro ConnComp s22)

KDT (pure)
KDT+SEJITS

 10

 100

 1000

 10000

 1 2 4 8 16 32

M
ea

n
B

FS
 T

im
e

(s
)

Number of MPI Tasks

Strong Scaling Performance (boxboro ConnComp s23)

KDT (pure)
KDT+SEJITS

Figure 12.14: Strong scaling performance for the two implementations of the connected components
algorithm, one in pure Python and the other using our DSEL. Results are shown on Boxboro with
R-MAT matrices of scale 22 (top) and scale 23 (bottom).

138

as the tracing inference included in Asp) into the DSEL compilers. In addition, the DSELs could
be extended to allow users to call a limited set of C++ native functions, such as the C++ standard
library’s templated max(), which would leverage existing well-optimized C++ code in defining
semiring operations.

The current DSELs do not support auto-tuning, mostly due to the fact that they interject
themselves into C++ in areas where auto-tuning would not be beneficial. In future work, changing
the interjection point to the actual matrix-matrix, matrix-vector, and vector-vector operations
would expose areas where auto-tuning is beneficial. Since SpMV auto-tuning already has a rich
history [115], the DSELs could auto-tune a specific SpMV implementation that is specialized for
data structure, specific semiring operations, and filtering. SpMV auto-tuning in libraries such as
OSKI do not optimize computations that do not use the usual addition and multiplication in their
semirings. In addition to generating code for serial SpMV, the DSELs could, with appropriate
modifications to the Combinatorial BLAS, generate hybrid shared-memory/MPI code for the SpMV,
again increasing the scope of potential optimizations.

Finally, one important avenue of future work is to allow users to define custom vertex and
edge types in Python and have them automatically translated to C++ for use with the underlying
Combinatorial BLAS framework used by KDT. Currently, these base types must be defined in
C++ as part of the KDT infrastructure. Asp does not currently contain mechanisms to support such
type declarations, but this is a direction for future work in Asp that can then be utilized in KDT.

12.4 Summary
In this chapter, we demonstrated how the SEJITS approach uses translation of domain-specific
embedded languages to mitigate performance slowdowns due to programming in a high-level
language, while interfacing with an existing Python and C++ package. We did this by defining
two DSELs, one for filtering semantic graphs, and one for defining semiring operations in Python.
The first enables users to perform graph algorithms on a subset of the graph, without incurring
huge performance penalties due to upcalls into Python. The semiring DSEL enables writing new
algorithms in KDT at the Python level without sacrificing performance. Together, these advance
the ability of users and algorithm designers to write high performance graph analyses with high
productivity.

139

Chapter 13

Other Case Studies: Implemented
Domain-Specific Embedded Languages and
Auto-tuned Libraries Using the Asp
Framework

Along with the more in-depth case studies already presented, this chapter summarizes three other
packages that use the Asp framework. In the previous case studies, we implemented domain-specific
embedded languages using Asp, but even if only the code generation and auto-tuning facilities are
used, efficiency programmers can build auto-tuned libraries for high-level languages that leverage
Asp’s capabilities. This allows efficiency programmers to use high-level code to implement their
libraries, and makes the resulting libraries accessible for productivity programmers who wish to use
the high-level embedding language.

Each of the three case studies in this chapter was implemented by other researchers, but all use
the Asp framework, demonstrating its usefulness and generality across computational domains and
across a variety of parallel platforms.

In Section 13.1 we outline an auto-tuned parallel library for the matrix powers kernel, a building
block of high performance communication-avoiding algorithms. Section 13.2 describes an auto-
tuned library for Gaussian mixture modeling that targets both multicore CPUs and GPUs. These two
libraries use Asp’s auto-tuning and code generation support to deliver high performance libraries
for Python. For a final example, Section 13.3 describes a domain-specific embedded language for
the Bag of Little Bootstraps statistical machine learning algorithm, targeting cloud computing as
well as local parallel computation. Section 13.4 summarizes.

13.1 Auto-tuned Matrix Powers for Python
Communication-avoiding algorithms [7] strive to increase performance of computations by modify-
ing them to reach the theoretical minimum communication bounds for the amount of data movement
required, often at the cost of increased computation. Given the historical trends of memory per-
formance relative to processor performance, minimizing data movement is increasingly the best
mechanism for optimizing algorithms on future architectures.

140

Optimization Type
Thread blocking Re-ordering
Explicit cache blocking Re-ordering
Tiling Size reduction
Symmetric representation Size reduction
Implicit cache blocking Re-ordering
Index array compression Size reduction

Table 13.1: Summary of optimizations for matrix powers. Some optimizations re-order the
computation to improve memory traffic usage; others reduce the amount of memory traffic by
reducing the storage size of the matrix.

One area of computation to which communication-avoiding optimizations have been applied
is solvers for linear systems. Such algorithms, given a matrix A and vector b, solve the equation
Ax = b for x. When the matrix A is large and sparse, direct solvers (such as Cholesky factorization)
can be impractical, so a number of iterative methods have been developed for such cases. One class
of these algorithms is Krylov subspace methods (KSMs), which can also be used to find eigenvalues
and eigenvectors for a matrix (that is, for a given matrix A, the λ and x such that Ax = λx).

Within KSMs, the major operation is sparse matrix vector multiply (SpMV) which occurs in
every iteration of the algorithm. For communication-avoiding KSMs [51, 81], the SpMV is replaced
by a kernel that performs k SpMVs at once, called the matrix powers kernel or the Akx kernel.
This refactoring enables implementations to divide the matrix into cache- or local memory-sized
blocks and reuse the entries of each block k times, substantially reducing overall memory traffic
but incurring redundant computation. In addition to changing the SpMV portion, the overall
solver algorithms usually need to be refactored to change some of the other operations to preserve
correctness and to take advantage of resulting opportunities for optimization.

Because there is a tradeoff in the parallel implementation between reducing memory traffic and
increasing redundant computation, to ensure the best possible performance, the matrix powers kernel
requires a large amount of tuning. In this section, we outline an auto-tuned matrix powers kernel for
Python that allows users to build communication-avoiding KSMs that obtain high performance. To
ensure interoperability with existing Python code, the kernel interfaces with NumPy, the widely-used
numerical library for Python. For the user, the interface is kept as simple as possible: they call the
auto-tuner with a particular matrix structure, and, after the auto-tuner is finished trying variants, it
returns an object representing the optimization plan that yields the best performance. This object
can then be used to call the kernel for subsequent runs (and can be preserved between application
invocations).

13.1.1 Implementation Strategy
The auto-tuner described here was implemented by Jeffrey Morlan for his master’s thesis [84] at
U.C. Berkeley, using the Asp framework described in this work.

The auto-tuner works by implementing optimizations that reduce memory traffic as well as
optimizations that re-order the computation in ways that improve parallelization or better use the
cache. These optimizations are summarized in Table 13.1 and described in more detail in [84].

Code generation is handled by a set of parameterized Asp templates, C++ code with Python

141

Fig. 5. CG solver performance on 2-socket Intel Xeon X5550 (8 cores, 2.67GHz)

Fig. 6. CG solver performance on 4-socket Intel Xeon X7560 (32 cores, 2.27GHz)

Figure 13.1: Performance of CG versions on an Intel Xeon X5550 (8 cores, 2.67 GHz).

control code interspersed within, controlling how the code generation proceeds. Parameters to each
of the optimizations are controlled by the tuning system, and are set depending on properties of the
input matrix as well as the machine architecture.

The auto-tuner generates a set of candidate parameters for the optimizations, and then generates
code for each combination. Each of these candidate implementations is compiled through the
Asp infrastructure into a dynamic library, and run to determine empirical performance. Once
all candidates have been exhausted, the optimization plan representing the fastest is returned for
subsequent use by the application. When the kernel is called with this plan, only the fastest is
compiled (if needed) and run. This exhaustive search is clearly overkill for the auto-tuner; future
work can limit the space searched by the tuning system.

13.1.2 Performance Results
The test solver application for this auto-tuner is the communication-avoiding conjugate gradient
(CA-CG) algorithm [51], which is a Krylov solver that operates on symmetric positive definite
systems (that is, the matrix A representing the system is symmetric and, for all non-zero real vectors
z, zTAz > 0). The performance of the CA-CG implementation is compared against the parallel CG
implementation in SciPy, a scientific computing library for Python, as well as with the parallel CG
from Intel’s MKL library [54].

Performance results on an 8-core Intel Xeon X5550 are shown in Figure 13.1. The dark portion
of each bar shows time spent in the matrix powers kernel. In every case, the communication-avoiding

142

version outperforms both the SciPy version and Intel’s highly-optimized MKL implementation. In
these charts, however, the tuning time is elided, and the time is on the order of a few thousand calls
of the kernel. This time can be improved greatly, however, with better heuristics for determining
which portion of the space to explore.

The tuner uses two major features of Asp: the ability to express code snippets with inline Python
control code and support for auto-tuning. Overall, the matrix powers auto-tuner demonstrates how
Asp and SEJITS can be used to deliver auto-tuned libraries that outperform highly hand-optimized
linear algebra routines, even if they do not use the full power of the approach.

13.2 Gaussian Mixture Modeling for CPUs and GPUs
Gaussian mixture models (GMMs) are a type of probabilistic density model made up of Gaussian
component functions. Such models are widely used in a variety of domains, including speech-related
recognition, financial modeling, and handwriting recognition. To find the component functions
that fit an observed data set, the standard method used is the Expectation-Maximization (EM) [82]
algorithm, a highly compute-intensive iterative method.

The EM algorithm proceeds by alternating between the Expectation (E) step and Maximization
(M) step. During the E step, given the current parameter estimates, the algorithm computes the
expectation of the log-likelihood of the observations under study. During the M step, parameters are
found that maximize the log-likelihood found during the E step. The iterations proceed until the
model parameters satisfy the given convergence criteria.

In this section, we outline the implementation of an auto-tuned version of the EM algorithm for
calculating GMM parameters that allows users to call a single Python function which generates and
compiles parallel code on multicore CPUs and GPUs and executes the EM algorithm, returning the
resulting parameters to the user. Because of its high computation requirements, the EM algorithm
highly benefits from parallelization; however, the strategy for the best parallelization differs given
characteristics of the observations, characteristics of the model being created, and the computational
capabilities of the machine. The auto-tuned library described in this section was built by Henry Cook
and Ekaterina Gonina at U.C. Berkeley using the Asp framework and is available for download. 1

13.2.1 Implementation Strategy
The auto-tuned GMM implementation uses templatized code snippets interjected with Python control
flow to decide how code generation occurs. Based on input parameters, different implementations
are used; for each possible parallelization strategy (the combination of which platform to target, plus
on which axes the parallelism should occur) a different code generator is utilized. Utility functions
and those required to interface between Python and the generated code are statically included in the
implementation. These include the necessary functions for loading data onto the GPU and back
when generating GPU-targeted code.

For backend hardware, the GMM tuner targets CUDA-compatible Nvidia GPUs and x86
multicore processors that can use Intel’s Cilk Plus runtime. Generally speaking, current high-end
GPUs have greater computational capability than can be obtained with current multicore processors;

1Source code available at http://github.com/hcook/gmm.

143

however, the required data movement to and from GPU memory can eliminate any potential
performance gains from using the GPU as a coprocessor.

The different implementations on each backend differ primarily in how the parallelization occurs.
More specifically, the different versions choose a different nesting of the parallel loops, and generate
code that is correct given the chosen nesting. In addition, further variants use blocking to improve
performance of the parallelization.

Currently, the auto-tuner tries all correct variants for a particular set of problem parameters; this
is done similarly to the structured grid DSEL in Chapter 10 so that each time the function is called
with the same set of parameters, a different variant is chosen until all variants have run. Subsequent
calls with the same parameters will always use the fastest, even across program invocations.

13.2.2 Performance Results
The application for testing performance results is a speaker diarization application. The goal of this
program is to determine which speaker says what in a recorded meeting, and proceeds by using
GMMs within a segmentation, training, and agglomeration loop; details of the algorithm used are
in [4]. For the purposes of evaluation, diarization applications are usually judged using two metrics:
time for completion and error rate. In this evaluation, we elide discussion of error rates, but note that
there generally is a tradeoff between the two evaluation criteria: the longer you run the diarization,
the more accurate the results will be, until some limit is reached.

Gonina et al [43] found that their implementation of the overall diarization algorithm in Python
outperformed the original C++ with pthreads code by a factor of 3× on multicore CPUs, and up to
6× on an Nvidia GTX480 GPU. The lines of code for the application also shrunk dramatically, due
to the expressiveness of Python as well as the ability to leverage high-level libraries.

A comparison of raw performance for the GMM portion of the computation is shown in
Figure 13.2 on a dual-socket Intel X5680 3.33 GHz machine and on an Nvidia GTX480 GPU.
The raw performance for the CPU is increased by almost 10× in some cases, while the tuned
GPU implementation outperforms a hand-written low-level CUDA implementation for some of the
datasets. For the M = 2 dataset, the use of a CUDA-based version is unnecessary on this hardware,
as the multicore performance is very close to the tuned CUDA performance.

In all, the performance results show that the combination of auto-tuning and run-time code
generation can yield excellent performance for computationally-intensive kernels, and can be made
portable across execution platforms. To users, it appears that they just call a single black-box
function, but that function can choose where to run based on available hardware and problem
parameters.

13.3 A DSEL for the Bag of Little Bootstraps Algorithm
Bootstrapping is a statistical method that attempts to measure the quality of a statistical estimator
when only an approximate distribution is available, and is based on using random sampling with
replacement to simulate sampling from a larger population than is available. The Bag of Little
Bootstraps (BLB) algorithm [64] is a variant of general bootstrapping that exposes more parallelism
and can potentially run in much less time.

144

Figure 5: GMM training performance given number of mixture-model components
M, which varies as speaker diarization algorithm converges, using the CUDA back-
end and a native CUDA version (both on NVIDIA GTX480), and the Cilk+ backend
and a C++/pthreads version (both on dual-socket Intel X5680 Westmere3.33GHz).

Mic Array Orig. C++/pthreads Py+Cilk+ Py+CUDA
Westmere Westmere GTX285/GTX480

Near field 20⇥ 56⇥ 101⇥ / 115⇥
Far field 11⇥ 32⇥ 68⇥ / 70⇥

Figure 6: Diarizer application performance as a multiple of real time; “100⇥”
means that 1 second of audio can be processed in 1/100 second. The Python
application using CUDA and Cilk+ outperforms the native C++/pthreads imple-
mentation by a factor of 3-6.

22

Figure 13.2: Raw Gaussian mixture model training performance on an Intel X5680 3.33 GHz CPU
and Nvidia GTX480 GPU. The versions using the SEJITS approach outperform the native (original)
implementations due to using auto-tuning.

145

Similar to the structured grid computations described in Chapter 10, this algorithm is not well-
suited for packaging in an auto-tuned library due to the use of application-dependent estimator
functions and reducer functions. The parallelism in BLB can be implemented on shared memory as
independent computations distributed over the processors in the system, all reading from the same
data store, while in the cloud, the data must be partitioned among the available machines to ensure
acceptable performance with large data sizes.

This section describes a high-performance DSEL for BLB in Python [95], using the Asp
framework, implemented by Peter Bersinger, David Howard, Aakash Prasad, and Richard Xia at
U.C. Berkeley. The DSEL can use either a multicore CPU via Cilk Plus for execution, or, if the data
size requires, execute in the cloud using the Spark [125] infrastructure. Note that the latter requires
generating Scala code, while the Cilk Plus implementation uses C++ with parallel extensions. Thus,
this DSEL is an example where user-supplied code is translated into different languages based on
where the execution occurs, and is an example of cloud computing support in Asp-based DSELs.

13.3.1 Implementation
Users specify the estimators and reducers for their problem by subclassing a specific parent class
and writing two functions, one each for the estimator and reducer, in a subset of Python, similar to
the interfaces exposed by the structured grid DSEL in Chapter 10. Within each of these functions, a
large subset of mathematical operations supported by pure Python can be used, including operations
such as mean and exponentiation, since these are commonly used in estimators and reducers.

The user-supplied function is parsed into a Python AST by the Asp framework, and this AST is
then translated to a Semantic Model that describes supported computations. The Semantic Model is
used to generate either Scala code for use with Spark in the cloud, or Cilk Plus code for use on a
shared memory machine. Both backends support the same kinds of BLB problems. In addition to
generating the estimator and reducer functions, the DSEL framework also outputs code to interface
between the parallel code and Python. In the case of Cilk Plus, these are simple conversions between
NumPy datatypes and C++ datatypes when necessary, but in the case of the Scala backend, the
DSEL uses Asp’s Scala support to translate datatypes using the Apache Avro [6] data serialization
library. Along with code to translate between Scala and Python, the DSEL also executes the call to
the remote Spark instance and processes the results. To end-users, the execution appears the same
whether pure Python, Cilk Plus, or Spark is used.

13.3.2 Performance Results
To measure scaling for the BLB DSEL, the DSEL authors perform model verification of an SVM
classifier on a randomly-selected subset of the Enron email corpus, consisting on over 126,000
feature vectors and tags, with each feature vector composed of approximately 96,000 features. 10%
of the subset was used for training the classifier, and the remaining 90% was used as a test set.

On a system with 4 Intel X5760 processors, the algorithm was able to scale 31.6× serial
performance on 32 cores, with almost no accuracy loss. This almost-ideal scaling is due to the BLB
algorithm’s excellent parallel structure, which the DSEL is able to fully utilize when generating
code.

The BLB results show that the same DSEL can be used for generating high performance code
for both shared memory machines and for remote execution on the cloud, and scale almost ideally

146

if the algorithm is amenable to it, bringing high performance in parallel to domain scientists using
statistical methods.

13.4 Summary
This chapter described three projects using Asp that have been implemented by others who are not
primary authors of Asp. Collectively, the three demonstrate that Asp and the SEJITS approach
can deliver high performance, excellent parallel scaling, and domain-specific auto-tuning to users
of high level languages. Furthermore, since all three of these were developed by people outside
the core Asp developers, they show that the Asp infrastructure is usable for efficiency experts for
developing auto-tuned libraries and DSELs.

147

Chapter 14

Insights, Future Directions, and
Conclusions

In this chapter, we step back and view the results of our case studies from a high level, synthesizing
lessons we can take from them as well as exploring some future directions for research. The work
here has shown the potential of our approach in bridging the Performance-Productivity Gap, and
the further directions outlined in this chapter will help demonstrate that potential. We finish by
summarizing the contributions of this thesis.

Section 14.1 outlines some observations from the case studies and high level conclusions we
can draw from them. In Section 14.2 we discuss how to extend the number of DSELs using
our methodology, and Section 14.3 discusses one of the major remaining obstacles before out
desired pattern-based programming approach can be implemented. In Section 14.4 we outline
some directions for Asp development. Section 14.5 concludes the thesis, summarizing the many
contributions.

14.1 Insights from Case Studies
We have presented six case studies, each with varying goals and varying scope in terms of the
breadth of the DSEL or auto-tuner. The different case studies operate over different segments
of their respective domains, from larger scopes such the structured grid DSEL to libraries that
implement a single operation, like the matrix powers library. This set of case studies covers a wide
swath of potential use cases for the SEJITS approach.

Three of our case studies strive to obtain the highest possible percentage of peak performance.
For the structured grid DSEL, we are able to write a simple compiler that, using domain-specific
optimizations and auto-tuning, can obtain over 93% of peak performance. The matrix powers kernel
outperforms currently-available Python libraries and even beats optimized vendor-provided libraries
across architectures. The Gaussian mixture modeling library outperforms existing versions of the
algorithm and can selectively target either an available GPU or run on a multicore machine. With
these three case studies, we demonstrate that the SEJITS approach can be used to deliver auto-tuning
both for traditional libraries and for motifs for which writing libraries is difficult. The packages
built with SEJITS are able to obtain high portions of absolute peak performance.

The goal in three other case studies is to eliminate the overhead of using higher-level functions in

148

frameworks where both performance is important and user-defined functions are essential. The KDT
DSELs interface with an existing multi-layered framework with distributed parallelism, yet still
eliminate almost all of the overhead of using Python. The Bag of Little Bootstraps implementation
desires to use real parallelism within a node and interface with the existing Spark infrastructure on
the cloud, even though the latter is written in Scala, a language that is not easily interoperable with
Python. In all three cases, the implementations greatly reduce the overhead of using a high level
language and are able to interface with existing frameworks that control parallelism.

In our approach, we try to eliminate analysis as much as possible by implementing declarative
languages that are expressed in an imperative syntax. Using the declarative approach, correctness
can be determined during the transformation from Python syntax to our intermediate representation;
in most cases, no further analysis is necessary. Further, by making our DSELs declarative, we
concentrate on enabling users to supply compilers with what the computation should be, not how to
perform it. Our DSEL compilers use knowledge of the domain combined with knowledge of the
backend execution units to automatically determine how to efficiently compute the user-supplied
code.

The use of Asp, our infrastructure for productively building DSELs in Python, also yields
some insight. First, all of the case studies are very small in terms of lines of code required for
logic; the largest ones use templating and most of the code involves low-level templates. Indeed,
the productivity of writing code in high level languages is demonstrated by how small the DSEL
compilers are. Furthermore, Asp eliminates many operations that DSEL designers otherwise would
need to care about, such as auto-tuning and compiling. It also makes other things easier: defining
the intermediate representation, interfacing with python, and caching to eliminate the need for
compilation when the code has already been used once.

Overall, the six case studies using Asp span a large number of use cases and provide evidence
that our approach to DSELs can result in productive, fast, parallel code for users, with a low
threshold effort for DSEL implementers.

14.2 Future Directions: Building an Ecosystem of DSELs
In our future vision of pattern-based programming, productivity programmers select which high-
level patterns their application is composed of, and use frameworks, libraries, and DSELs that
implement subsets of each pattern in order to build their application. For this vision to succeed,
we must have enough DSELs that large and complicated applications can be architected from
them. A good test of this approach will be when enough DSELs exist that a full application can be
constructed from multiple DSELs. One future direction, then, is to build up a suite of DSELs and
libraries using our approach for use by programmers.

Even for existing DSELs, extensions that increase their scope or implement new optimizations
are necessary. For example, the structured grid DSEL could be made more functional with some lan-
guage extensions, or could optimize code for the small grids present in Adaptive Mesh Refinement,
which require a very different set of transformations and optimizations than the class of structured
grid optimizations currently implemented.

For this large-enough suite of DSEL compilers to exist, a community of developers is necessary.
For languages such as Python and Ruby, programming communities continue to write innovative
new software packages that greatly extend the usefulness of each language. If we were able to do

149

DSL 1!

DSL 2!

Python!

Python!

DSL 1!

DSL 2!

Python!

Figure 14.1: Two kinds of composition for DSELs. Left: a single Python program uses two
different DSELs, passing the output of one to the other, perhaps with some code to transform one’s
output to the other’s input. Right: a single Python program uses two different DSELs, with one
DSEL using the other as a subroutine.

the same around pattern-specific DSELs, the momentum would be useful for both extending exiting
DSEL compilers and for building new ones as they become necessary, essentially “crowdsourcing”
the continued expansion of the DSEL suite . A central repository such as the Python Package Index
(PyPI) [99] or RubyGems [34] would help publicize and build the usefulness of our DSELs.

14.3 Future Directions: Composing DSELs
Another necessary piece of functionality for our future vision of programming is the need to compose
pattern-based DSELs and libraries. Note that this need not be general all-to-all composition,
since compositions between certain patterns doesn’t make sense. But for combinations where
composition does make sense, we see two different kinds of composition: sequential and subroutine.
Figure 14.1 shows the two kinds of composition. In sequential composition, DSELs are used
one after another, with intermediate code possibly coordinating between the two. In contrast, the
subroutine composition case occurs when one DSEL is used as a subroutine in another.

It is rather simple to build infrastructure for sequential composition, which mostly already works.
However, data structure interoperability is not automatic and requires either that both DSELs use the
same underlying data representation or that the user explicitly transform the data . Future extensions
to the infrastructure could make interoperability easier if some mechanism that enables separate
DSELs to agree on JIT transformations between representations as necessary, or to agree on tuning
decisions that impact the performance of each. Such agreement on tuning decisions between DSELs
is necessary for good performance, as shown in previous work on co-tuning (auto-tuning when two
different kernels are involved, each with their own tuning decisions that impact the other) [80].

Subroutine composition, however, is more difficult. The locus of control is now the “outside”
DSEL, and the “inside” DSEL must have some functionality for allowing tuning decisions to be
made outside of it. In other words, we must build DSELs that have three modes: one where the

150

DSEL controls everything, one as where it is the outside DSEL controlling decisions by subroutines,
and one as the inside DSEL. Even with this strategy, many potential issues remain, such as how
to generate interoperable code and how exactly tuning decisions will work in this context. This
remains a major area of future work necessary to enable more powerful composition. One approach
is to begin by building related DSELs for a computational domain that can be composed with one
another; by limiting the interoperable DSELs, the composition problem becomes more tractable.
Already, preliminary work building a set of DSELs for multimedia content analysis applications is
starting to explore issues of composition in more detail [44].

14.4 Future Directions for Asp
Asp has shown successfully that infrastructure plus a high level language can enable productively
building DSELs that are small and result in portable performance. However, much more can be
done to make building DSELs using the SEJITS approach easier and to enable DSEL designers to
extend the functionality they can include in their packages and frameworks.

14.4.1 Data Structure Definitions
One common task that Asp does not support but would allow further functionality is defining
user-defined data structures in Python that are automatically translated into C++ structures that are
accessible from Python, but can be used in the code generation toolchain. For example, recall that
KDT forces users to write data structures in C++ if they require custom ones, with a limit of only
two types. Asp support for such data structure definitions would be extremely useful. Existing
Python libraries can be leveraged, such as ctypes, which is part of the standard library in Python
and allows users to interface with C data structures when wrapping external C libraries. Such
functionality could be integrated with Asp, perhaps by using a thin DSL that generates ctypes
internally.

14.4.2 Improvements in Code Generation
One of the current limitations in Asp is the lack of unification of templates and backend ASTs.
Although templates can include ASTs, we do not allow templated code to be transformed or
manipulated using the AST transformation framework, due to not including a C++ (or other
backend) parser. For this functionality, it may be possible to interface with the Rose transformation
framework [33] or to utilize LLVM; as a consequence, we may explore changing the representation
for C++ ASTs to one utilized by these packages.

In addition, one promising way to generate code is to use the Sketch [103] system. In Sketch,
the compiler takes as input a simple imperative specification written in Java-like syntax, combined
with an optimized skeleton with “holes” such as missing integers or under-specified expressions.
The compiler then synthesizes the skeleton into an implementation that provably computes the same
answer as the specification, for all inputs. DSELs could be implemented with even less effort if
we leverage this technology from within Asp and allow DSEL implementers to use synthesis to
generate provably-equivalent optimized code.

151

14.4.3 Compilation As A Service
With mobile devices becoming more and more important to support, Asp can possibly be used to
implement compilation-as-a-service: instead of running a compilation toolchain locally, which may
consume more power than is desired, the DSEL infrastructure would send appropriate parameters
to a web service which returns a runnable, compiled library that can be used. This allows just-
in-time specialization to occur without requiring a complete toolchain be present, which can be
advantageous for all classes of machines.

14.4.4 Speeding Up Auto-tuning
The major time-consuming portion of DSELs that use auto-tuning is the search. Although we
have implemented incremental auto-tuning that does not require large amounts of up-front testing,
completely searching the possible parameter space is not necessarily the most efficient way to settle
on the best possible version.

We have seen that different strategies to explore the auto-tuning space can converge on a best
version more quickly than randomly running all of them. Strategies such as hill climbing or gradient
ascent can obtain good results more quickly, especially when the parameter space behaves in
predictable ways. Furthermore, machine learning has shown promise [41] for determining best
parameters for auto-tuned code. However, the accuracy and usefulness of machine learning is
enhanced when more data is available.

One idea is to build a global database that can be used by DSEL auto-tuners to store and retrieve
performance information, indexed by architecture and suitable per-DSEL parameters. Such a
database could aggregate information from all DSEL compilers and run machine learning algorithms
to guess best tuning parameters for new problem instances or new architectures. Incremental
revisions to machine learning models enabled by this approach may bring increasing accuracy to
subsequent initial guesses.

152

14.5 Conclusion
In this thesis, we present a diversity of contributions, including a new methodology for combining
DSELs and auto-tuning, software infrastructure for building these DSELs that is being used by
others, and several examples of DSELs that obtain excellent performance compared with the state-
of-the-art across differing domains, thanks to aggressive domain-specific optimizations encoded in
the DSEL compilers. Specifically, the contributions include:

• A framework in Chapter 5 for writing DSEL compilers through a set of abstractions for
manipulating and generating code and demonstrate their use in building auto-tuners, both by
the original authors of the framework and by outside users.

• We develop a technique for auto-tuning computations that involve higher order functions, i.e.,
stencils or graphs, that can only be tuned after instantiation with a user-provided operator, in
Chapters 10 and 12.

• This technique uses an intermediate representation based on declarative semantics which
provides the freedom needed to transform code without the need for difficult analyses.

• We demonstrate, in Chapter 10, a simple imperative language for expressing structured grid
computations that is translated using introspection into a declarative intermediate form that
allows for a large set of possible implementations. We demonstrate the high level interface and
its restrictions, which eliminate the need for complex analysis. The results show performance
that obtains over 83% of peak memory bandwidth across different machines for a variety of
kernels.

• We show a second case study in Chapter 12 of graph traversal algorithms that uses an existing
hand-tuned library (CombBLAS) and solves an important performance problem of optimizing
over user-provided operators written in a high-level language. The traditional approach
of calling back to the high-level language is prohibitively expensive and the DSELs are
able to match or exceed the performance of hand-written low-level operators, even without
auto-tuning. In addition, the DSELs enable future optimizations that would not be possible
otherwise.

• We demonstrate the effectiveness of our framework as a vehicle for delivering library auto-
tuning to high-level languages for computations for which a full DSEL is unnecessary, in
Chapter 13, with two examples that obtain excellent performance on CPUs and GPUs. We
demonstrate that the same DSEL code can be used to execute on multicore CPUs, GPUs,
and the cloud. These examples are implemented by outside users, demonstrating that our
infrastructure and approach is usable by other performance experts.

As large-scale machines approach peak performance of an Exaflop per second (1018 floating
point operations per second), resulting in new complexities in architecture, the contributions of
this thesis are becoming even more important. Such large increases in computation power will
be unavailable to programmers who are not performance experts. Unless the programmability
of such machines is increased using methodologies like those presented in this thesis, important
simulation problems such as next-generation climate simulation will not benefit from larger, more

153

complex machines. With this thesis, we demonstrate a viable approach to bridging the Productivity-
Performance Gap, regardless of complexities in next-generation computer architectures.

154

Bibliography

[1] David Abrahams and Ralf W. Grosse-Kunstleve. “Building Hybrid Systems with Boost.
Python”. In: C/C++ Users Journal 21.7 (July 2003). URL: http://www.osti.gov/
energycitations/product.biblio.jsp?osti_id=815409.

[2] Al Danial et al. CLOC– Count Lines of Code. 2012. URL: http://cloc.sourceforge.
net.

[3] E. Anderson et al. LAPACK Users’ Guide (third edition). Philadelphia: SIAM, 1999. URL:
www.netlib.org/lapack.

[4] X Anguera, Simon Bozonnet, Nicholas W D Evans, Corinne Fredouille, G Friedland, and
O Vinyals. “Speaker Diarization: A Review of Recent Research”. In: IEEE Transactions
On Acoustics Speech and Language Processing (TASLP), special issue on New Frontiers in
Rich Transcription (2011).

[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and
Saman Amarasinghe. “PetaBricks: A Language and Compiler for Algorithmic Choice”. In:
ACM SIGPLAN Conference on Programming Language Design and Implementation. Dublin,
Ireland, 2009. URL: http://groups.csail.mit.edu/commit/papers/2009/ansel-
pldi09.pdf.

[6] Apache Avro. The Apache Software Foundation, 2011. URL: http://avro.apache.org/.

[7] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. “Minimizing Communica-
tion in Numerical Linear Algebra”. In: SIAM Journal of Matrix Analysis Applications 32.3
(2011), pp. 866–901. DOI: 10.1137/090769156.

[8] Michael Bayer. Mako : Templates for Python. 2012. URL: http://www.makotemplates.
org/.

[9] David Beazley. “Understanding the Python GIL”. In: PyCON Python Conference. Atlanta,
Georgia, 2010.

[10] David M. Beazley. “SWIG: An Easy to Use Tool for Integrating Scripting Languages With
C and C++”. In: USENIX Tcl/Tk Workshop. TCLTK’96. Monterey, California: USENIX
Association, 1996, pp. 15–15. URL: http://dl.acm.org/citation.cfm?id=1267498.
1267513.

[11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. “Cython: The
Best of Both Worlds”. In: Computing in Science Engineering 13.2 (2011), pp. 31 –39. ISSN:
1521-9615. DOI: 10.1109/MCSE.2010.118.

[12] Fabrice Bellard. Tiny C Compiler. URL: http://tinycc.org.

155

[13] Marsha J. Berger and Joseph E. Oliger. Adaptive Mesh Refinement for Hyperbolic Partial
Differential Equations. Tech. rep. Stanford, CA, USA, 1983.

[14] Jeff Bilmes, Krste Asanović, Chee-Whye Chin, and Jim Demmel. “Optimizing Matrix
Multiply using PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology”. In:
International Conference on Supercomputing. Vienna, Austria, 1997.

[15] L. S. Blackford et al. ScaLAPACK Users’ Guide. Philadelphia: SIAM, 1997. URL: www.
netlib.org/scalapack.

[16] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. “Tracing the Meta-
Level: PyPy’s Tracing JIT Compiler”. In: Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems. Genova, Italy:
ACM, 2009, pp. 18–25. ISBN: 978-1-60558-541-3. DOI: 10.1145/1565824.1565827.
URL: http://portal.acm.org/citation.cfm?id=1565827.

[17] Uday Bondhugula, J. Ramanujam, and et al. “PLuTo: A Practical and Fully Automatic
Polyhedral Program Optimization System”. In: Programming Language Design and Imple-
mentation (PLDI). 2008.

[18] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A mUltigrid Tutorial
(2nd ed.) Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000.
ISBN: 0-89871-462-1.

[19] Aydin Buluc, Armando Fox, John Gilbert, Shoaib Ashraf Kamil, Adam Lugowski, Leonid
Oliker, and Samuel Williams. High-Performance Analysis of Filtered Semantic Graphs.
Tech. rep. UCB/EECS-2012-61. EECS Department, University of California, Berkeley,
2012. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
61.html.

[20] Aydın Buluç and John R. Gilbert. The Combinatorial BLAS: Design, Implementation, and
Applications. Tech. rep. UCSB-CS-2010-18. University of California, Santa Barbara, 2010.

[21] Jacob Burnim, Tayfun Elmas, George C. Necula, and Koushik Sen. “NDSeq: Runtime
Checking for Nondeterministic Sequential Specifications of Parallel Correctness”. In: Pro-
gramming Language Design and Implementation. Ed. by Mary W. Hall and David A. Padua.
ACM, 2011, pp. 401–414. ISBN: 978-1-4503-0663-8.

[22] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanović, James Demmel, Kurt Keutzer,
John Shalf, Kathy Yelick, and Armando Fox. “SEJITS: Getting Productivity And Perfor-
mance With Selective Embedded JIT Specialization”. In: Workshop on Programming Models
for Emerging Architectures (PMEA 2009). Raleigh, NC, 2009.

[23] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R. Atreya,
and Kunle Olukotun. “A Domain-Specific Approach to Heterogeneous Parallelism”. In:
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Ed. by
Calin Cascaval and Pen-Chung Yew. ACM, 2011, pp. 35–46. ISBN: 978-1-4503-0119-0.

[24] J.C. Chaves et al. “Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation”. In: HPCMP Users Group Conference, 2006. 2006, pp. 429–434.
DOI: 10.1109/HPCMP-UGC.2006.55.

156

[25] Matthias Christen, Olaf Schenk, and Helmar Burkhart. “PATUS: A Code Generation and
Autotuning Framework for Parallel Iterative Stencil Computations on Modern Microarchi-
tectures”. In: IEEE International Parallel & Distributed Processing Symposium. IPDPS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 676–687. ISBN: 978-0-7695-
4385-7. DOI: 10.1109/IPDPS.2011.70. URL: http://dx.doi.org/10.1109/IPDPS.
2011.70.

[26] I-Hsin Chung. “Towards Automatic Performance Tuning”. AAI3153156. PhD thesis. Col-
lege Park, MD, USA, 2004. ISBN: 0-496-13683-6.

[27] Peter J. A. Cock et al. “Biopython”. In: Bioinformatics 25.11 (June 2009), pp. 1422–1423.
ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btp163. URL: http://dx.doi.
org/10.1093/bioinformatics/btp163.

[28] Graph 500 Steering Committee. The Graph 500 List. 2012. URL: http://graph500.org.

[29] Ral de la Cruz and Mauricio Araya-Polo. “Towards a Multi-Level Cache Performance
Model for 3D Stencil Computation”. In: Procedia CS 4 (2011), pp. 2146–2155. DOI:
http://dx.doi.org/10.1016/j.procs.2011.04.235.

[30] Kaushik Datta. “Auto-tuning Stencil Codes for Cache-Based Multicore Platforms”. PhD
thesis. EECS Department, University of California, Berkeley, 2009.

[31] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and Katherine
A. Yelick. “Optimization and Performance Modeling of Stencil Computations on Modern
Microprocessors”. In: SIAM Review 51.1 (2009), pp. 129–159.

[32] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid
Oliker, David Patterson, John Shalf, and Katherine Yelick. “Stencil Computation Opti-
mization and Autotuning on State-of-the-Art Multicore Architectures”. In: Supercomputing.
2008.

[33] Kei Davis and Daniel J. Quinlan. “ROSE: An Optimizing Transformation System for C++
Array-Class Libraries”. In: ECOOP Workshops. 1998, pp. 452–453.

[34] Dirk Elmendorf. “RubyGems”. In: Linux J. 2006.147 (July 2006), pp. 3–. ISSN: 1075-3583.
URL: http://dl.acm.org/citation.cfm?id=1145562.1145565.

[35] Embeddable Common Lisp. http://ecls.sourceforge.net/ .

[36] Dawson R. Engler and Todd A. Proebsting. “DCG: An Efficient, Retargetable Dynamic
Code Generation System”. In: International Conference on Architectural Support for
Programming Languages and Operating Systems. San Jose, California, United States: ACM,
1994, pp. 263–272. ISBN: 0-89791-660-3.

[37] Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern Web Architecture”.
In: ACM Transactions on Internet Technologies 2.2 (May 2002), pp. 115–150. ISSN: 1533-
5399. DOI: 10.1145/514183.514185. URL: http://doi.acm.org/10.1145/514183.
514185.

[38] Martin Fowler. Domain-Specific Languages (Addison-Wesley Signature Series (Fowler)).
Addison-Wesley Professional, 2010. ISBN: 0321712943.

157

[39] Matteo Frigo and Steven G. Johnson. “The Design and Implementation of FFTW3”. In:
Proceedings of the IEEE 93.2 (2005). Special issue on “Program Generation, Optimization,
and Platform Adaptation”, pp. 216–231.

[40] Matteo Frigo and Volker Strumpen. “Cache Oblivious Stencil Computations”. In: Interna-
tional Conference on Supercomputing. ICS ’05. Cambridge, Massachusetts: ACM, 2005,
pp. 361–366. ISBN: 1-59593-167-8.

[41] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. “A Case for
Machine Learning to Optimize Multicore Performance”. In: Workshop on Hot Topics in
Parallel Computing (HotPar). 2009. URL: http://www.usenix.org/event/hotpar09/
tech/full_papers/ganapathi/ganapathi.pdf.

[42] Robert Glück and Neil D. Jones. “Automatic Program Specialization by Partial Evaluation:
An Introduction”. In: Software Engineering in Scientific Computing. 1996, pp. 70–77.

[43] Ekaterina Gonina. “Fast Speaker Diarization Using a Specialization Framework for Gaussian
Mixture Model Training”. MA thesis. EECS Department, University of California, Berkeley,
2011. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-
128.html.

[44] Ekaterina Gonina. PyCASP: Python-based Content Analysis Using Specialization. 2012.
URL: http://www.eecs.berkeley.edu/˜egonina/pycasp.html.

[45] Martin Griebl, Christian Lengauer, and Sabine Wetzel. “Code Generation in the Polytope
Model”. In: In IEEE PACT. IEEE Computer Society Press, 1998.

[46] Groovy: A Dynamic Language for the Java Platform. 2012. URL: http : / / groovy .
codehaus.org.

[47] William Gropp. “MPICH2: A New Start for MPI Implementations”. In: European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface. London, UK, UK: Springer-Verlag, 2002, pp. 7–. ISBN: 3-540-44296-0. URL:
http://dl.acm.org/citation.cfm?id=648139.749473.

[48] David Heinemeier Hansson. Active Record: Object-relation Mapping Put on Rails. http://ar.rubyonrails.com/.
2004. URL: http://ar.rubyonrails.com/.

[49] A. Hellesoy and M. Wynne. The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. Pragmatic Programmers. O’Reilly Vlg. GmbH & Company, 2012.
ISBN: 9781934356807. URL: http://books.google.com/books?id=oMswygAACAAJ.

[50] M. D. Hill and A. J. Smith. “Evaluating Associativity in CPU Caches”. In: IEEE Trans.
Comput. 38.12 (1989), pp. 1612–1630. ISSN: 0018-9340. DOI: http://dx.doi.org/10.
1109/12.40842.

[51] Mark Frederick Hoemmen. “Communication-Avoiding Krylov Subspace Methods”. PhD
thesis. EECS Department, University of California, Berkeley, 2010. URL: http://www.
eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.html.

[52] Paul Hudak. “Building Domain-Specific Embedded Languages”. In: ACM Comput. Surv.
28 (4es 1996), p. 196. ISSN: 0360-0300. DOI: http://doi.acm.org/10.1145/242224.
242477.

158

[53] Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs. Awk vs...An Experiment in
Software Prototyping Productivity. Tech. rep. YALEU/DCS/RR-1049. New Haven, CT:
Yale University Department of Computer Science, 1994.

[54] Intel. Math Kernel Library. URL: http://developer.intel.com/software/products/
mkl/.

[55] Intel Cilk Plus. 2012. URL: http://software.intel.com/en-us/intel-cilk-plus.

[56] A. Jain. pOSKI: An Extensible Autotuning Framework to Perform Optimized SpMVs on
Multicore Architectures. UC Berkeley EECS MS Report,see bebop.cs.berkeley.edu. 2008.

[57] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open Source Scientific Tools for
Python. 2001–. URL: http://www.scipy.org/.

[58] Neil D. Jones. “Transformation by Interpreter Specialisation”. In: Science of Computer
Programming 52 (1-3 2004), pp. 307–339. ISSN: 0167-6423.

[59] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. “An Auto-Tuning
Framework for Parallel Multicore Stencil Computations.” In: IEEE International Parallel
& Distributed Processing Symposium. 2010, pp. 1–12.

[60] Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Katherine Yelick. “Impact
of Modern Memory Subsystems on Cache Optimizations for Stencil Computations”. In:
Workshop on Memory System Performance. MSP ’05. Chicago, Illinois: ACM, 2005, pp. 36–
43. ISBN: 1-59593-147-3. DOI: 10.1145/1111583.1111589. URL: http://doi.acm.
org/10.1145/1111583.1111589.

[61] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and Katherine
Yelick. “Implicit and Explicit Optimizations for Stencil Computations”. In: Workshop on
Memory System Performance and Correctness. ACM Press, 2006, pp. 51–60.

[62] Jeremy V. Kepner and J. R. Gilbert. Graph Algorithms in the Language of Linear Algebra.
Society for Industrial and Applied Mathematics, 2011. ISBN: 9780898719901. URL: http:
//www.worldcat.org/isbn/9780898719901.

[63] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29. 2008. URL:
http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf.

[64] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I. Jordan. “A Scalable
Bootstrap for Massive Data”. In: (2012). URL: http://arxiv.org/abs/1112.5016v2.

[65] Andreas Klockner. CodePy. 2012. URL: http://mathema.tician.de/software/
codepy.

[66] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro, Paul Ivanov, and Ahmed
Fasih. “PyCUDA: GPU Run-Time Code Generation for High-Performance Computing”. In:
CoRR abs/0911.3456 (2009).

[67] Andrew Koenig. “Patterns and Antipatterns”. In: The Patterns Handbooks. Ed. by Linda
Rising. New York, NY, USA: Cambridge University Press, 1998, pp. 383–389. ISBN:
0-521-64818-1. URL: http://dl.acm.org/citation.cfm?id=301570.301985.

159

[68] Christopher D. Krieger and Michelle Mills Strout. “Executing Optimized Irregular Appli-
cations Using Task Graphs Within Existing Parallel Models”. In: Workshop on Irregular
Applications: Architectures and Algorithms (IA3) held in conjunction with SC12. 2012.

[69] Chris Lattner. “LLVM and Clang: Next Generation Compiler Technology”. In: Proceedings
of BSDCan: The BSD Conference. 2008.

[70] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04). Palo Alto, California, 2004.

[71] Daan Leijen and Erik Meijer. “Domain Specific Embedded Compilers”. In: DSL. Ed. by
Thomas Ball. ACM, 1999, pp. 109–122. ISBN: 1-58113-255-7.

[72] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos. “Realistic, Mathematically
Tractable Graph Generation and Evolution, Using Kronecker Multiplication”. In: PKDD.
Springer, 2005, pp. 133–145. DOI: 10.1.1.111.8229.

[73] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph
M. Hellerstein. “Distributed GraphLab: A Framework for Machine Learning and Data
Mining in the Cloud”. In: Proceedings of the VLDB Endowment 5.8 (Apr. 2012), pp. 716–
727. ISSN: 2150-8097. URL: http://dl.acm.org/citation.cfm?id=2212351.
2212354.

[74] A. Lugowski, D. Alber, A. Buluç, J. Gilbert, S. Reinhardt, Y. Teng, and A. Waranis. “A
Flexible Open-Source Toolbox for Scalable Complex Graph Analysis”. In: SDM’12. 2012,
pp. 930–941. URL: \href{http://siam.omnibooksonline.com/2012datamining/
data/papers/158.pdf}.

[75] Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. “Pregel: A System For Large-Scale Graph Processing”. In: SIGMOD
(2010).

[76] John D. McCalpin. “Memory Bandwidth and Machine Balance in Current High Performance
Computers”. In: IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter (Dec. 1995), pp. 19–25.

[77] K.C. McPhee, C. Denk, Z. Al Rekabi, and A. Rauscher. “Bilateral Filtering of Magnetic
Resonance Phase Images”. In: Magnetic Resononance Imaging (2011).

[78] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and How to Develop Domain-
Specific Languages”. In: ACM Computing Surveys 37.4 (Dec. 2005), pp. 316–344. ISSN:
0360-0300. DOI: 10.1145/1118890.1118892. URL: http://doi.acm.org/10.1145/
1118890.1118892.

[79] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. “Principles of
Runtime Support for Parallel Processors”. In: International Conference on Supercomputing.
ICS ’88. St. Malo, France: ACM, 1988, pp. 140–152. ISBN: 0-89791-272-1. DOI: 10.1145/
55364.55378. URL: http://doi.acm.org/10.1145/55364.55378.

[80] Marghoob Mohiyuddin. “Tuning Hardware and Software for Multiprocessors”. PhD thesis.
EECS Department, University of California, Berkeley, 2012. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2012/EECS-2012-103.html.

160

[81] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Kathy Yelick. “Minimizing
Communication in Sparse Matrix Solvers”. In: Supercomputing 2009. Portland, OR, 2009.

[82] T. K. Moon. “The Expectation-Maximization Algorithm”. In: IEEE Signal Processing
Magazine 13.6 (Nov. 1996), pp. 47–60. ISSN: 10535888. DOI: 10.1109/79.543975. URL:
http://dx.doi.org/10.1109/79.543975.

[83] G. E. Moore. “Cramming More Components onto Integrated Circuits”. In: Electronics 38.8
(Apr. 1965), pp. 114–117. ISSN: 0018-9219. DOI: 10.1109/JPROC.1998.658762.

[84] Jeffrey Morlan. “Auto-tuning the Matrix Powers Kernel with SEJITS”. MA thesis. EECS De-
partment, University of California, Berkeley, 2012. URL: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2012/EECS-2012-95.html.

[85] Chris J. Newburn et al. “Intel’s Array Building Blocks: A Retargetable, Dynamic Compiler
and Embedded Language”. In: IEEE/ACM International Symposium on Code Generation
and Optimization. CGO ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 224–
235. ISBN: 978-1-61284-356-8. URL: http://dl.acm.org/citation.cfm?id=
2190025.2190069.

[86] Eric Niebler. “Proto: A Compiler Construction Toolkit for DSELs”. In: Symposium on
Library-Centric Software Design. LCSD ’07. Montreal, Canada: ACM, 2007, pp. 42–51.
ISBN: 978-1-60558-086-9. DOI: 10.1145/1512762.1512767. URL: http://doi.acm.
org/10.1145/1512762.1512767.

[87] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide. 2007. URL:
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA\

_Programming_Guide_1.0.pdf.

[88] Travis E. Oliphant. “Python for Scientific Computing”. In: Computing in Science & Engi-
neering 9.3 (2007), pp. 10–20. URL: http://link.aip.org/link/?CSX/9/10/1.

[89] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.0.
May 2008. URL: \url{http://www.openmp.org/mp-documents/spec30.pdf}.

[90] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66. Previous number = SIDL-
WP-1999-0120. Stanford InfoLab, 1999. URL: http://ilpubs.stanford.edu:8090/
422/.

[91] Michael Paleczny, Christopher Vick, and Cliff Click. “The Java HotSpot Server Compiler”.
In: Java Virtual Machine Research and Technology Symposium (JVM ’01). 2001.

[92] Jens Palsberg and C. Barry Jay. “The Essence of the Visitor Pattern”. In: International
Computer Software and Applications Conference. COMPSAC ’98. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 9–15. ISBN: 0-8186-8585-9. URL: http://dl.acm.
org/citation.cfm?id=645980.674267.

[93] Inc. PLT Scheme. The Racket Language. 2012. URL: http://racket-lang.org.

[94] Sebastian Pop, Albert Cohen, Cdric Bastoul, Sylvain Girbal, Georges andr Silber, and
Nicolas Vasilache. “GRAPHITE: Polyhedral Analyses and Optimizations for GCC”. In:
GCC Developers Summit. 2006, p. 2006.

161

[95] Aakash Prasad, David Howard, Shoaib Kamil, and Armando Fox. “Parallel High Perfor-
mance Statistical Bootstrapping in Python”. In: Scientific Computing in Python Conference.
2012.

[96] L. Prechelt. “An Empirical Comparison of Seven Programming Languages”. In: IEEE
Computer 33.10 (2000), pp. 23–29. ISSN: 0018-9162. DOI: 10.1109/2.876288.

[97] Calton Pu, Henry Massalin, and John Ioannidis. “The Synthesis Kernel”. In: Computing
Systems 1 (1988), pp. 11–32.

[98] Markus Püschel et al. “SPIRAL: Code Generation for DSP Transforms”. In: Proceedings
of the IEEE, special issue on “Program Generation, Optimization, and Adaptation” 93.2
(2005), pp. 232–275.

[99] PyPi - The Python Package Index. 2012. URL: http://pypi.python.org/pypi.

[100] Python Programming Language - Offical Website. 2012. URL: http://www.python.org.

[101] Gabriel Rivera and Chau-Wen Tseng. “Tiling Optimizations for 3D Scientific Computa-
tions”. In: ACM/IEEE conference on Supercomputing. Supercomputing ’00. Dallas, Texas,
United States: IEEE Computer Society, 2000. ISBN: 0-7803-9802-5. URL: http://dl.
acm.org/citation.cfm?id=370049.370403.

[102] Ruby Programming Language. 2012. URL: http://www.ruby-lang.org.

[103] Armando Solar Lezama. Program Synthesis By Sketching. Tech. rep. UCB/EECS-2008-176.
EECS Department, University of California, Berkeley, 2008. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-176.html.

[104] David Stutz, Ted Neward, and Geoff Shilling. Shared Source Cli Essentials. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 2002. ISBN: 059600351X.

[105] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E.
Leiserson. “The Pochoir Stencil Compiler”. In: Symposium on Parallelism in Algorithms
and Architectures. SPAA ’11. San Jose, California, USA: ACM, 2011, pp. 117–128. ISBN:
978-1-4503-0743-7.

[106] David Tarditi, Sidd Puri, and Jose Oglesby. “Accelerator: Using Data Parallelism to Program
GPUs for General-Purpose Uses”. In: International Conference on Architectural Support
for Programming Languages and Operating Systems. 2006, pp. 325–335.

[107] Tcl Developer Site. 2012. URL: http://www.tcl.tk.

[108] The Perl Programming Language. 2012. URL: http://www.perl.org.

[109] The Programming Language Lua. 2012. URL: http://www.lua.org.

[110] The Scala Programming Language. 2012. URL: http://www.scala-lang.org.

[111] Scott Thibault, Charles Consel, Julia L. Lawall, and Renaud Marlet Gilles Muller. “Static
and Dynamic Program Compilation by Interpreter Specialization”. In: Higher-Order and
Symbolic Computation. 2000, pp. 161–178.

162

[112] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K. Hollingsworth.
“A Scalable Auto-tuning Framework for Compiler Optimization”. In: IEEE International
Symposium on Parallel&Distributed Processing. IPDPS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–12. ISBN: 978-1-4244-3751-1. DOI: 10.1109/IPDPS.
2009.5161054. URL: http://dx.doi.org/10.1109/IPDPS.2009.5161054.

[113] Top500 Project: Top500 Supercomputing Sites. 2012. URL: http://top500.org.

[114] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In: Communications of
the ACM 33.8 (Aug. 1990), pp. 103–111. ISSN: 0001-0782. DOI: 10.1145/79173.79181.
URL: http://doi.acm.org/10.1145/79173.79181.

[115] Richard Vuduc, James Demmel, and Katherine Yelick. “OSKI: A library of automatically
tuned sparse matrix kernels”. In: Journal of Physics Conference Series 16.i (2005), pp. 521–
530.

[116] Richard W. Vuduc. “Automatic Performance Tuning of Sparse Matrix Kernels”. PhD thesis.
Berkeley, CA, USA: University of California, 2004. URL: http://bebop.cs.berkeley.
edu/pubs/vuduc2003-dissertation.pdf.

[117] Michael F. Wehner, Leonid Oliker, and John Shalf. “Towards Ultra-High Resolution Mod-
els of Climate and Weather”. In: International Journal of High Performance Computing
Applications 22.2 (2008), pp. 149–165.

[118] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated Empirical Optimization
of Software and the ATLAS Project”. In: Parallel Computing 27.1–2 (2001), pp. 3–35. URL:
www.netlib.org/lapack/lawns/lawn147.ps.

[119] Samuel Williams, Andrew Waterman, and David A. Patterson. “Roofline: An Insightful
Visual Performance Model for Multicore Architectures.” In: Communications of the ACM
(2009), pp. 65–76.

[120] Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine Yelick. “Lattice
Boltzmann Simulation Optimization on Leading Multicore Platforms”. In: Interational
Conference on Parallel and Distributed Computing Systems (IPDPS. 2008.

[121] Samuel Webb Williams. “Auto-tuning Performance on Multicore Computers”. PhD thesis.
EECS Department, University of California, Berkeley, 2008. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html.

[122] David Wonnacott. “Using Time Skewing to Eliminate Idle Time due to Memory Bandwidth
and Network Limitations”. In: Parallel and Distributed Processing Symposium, Interna-
tional 0 (2000), p. 171. ISSN: 1530-2075. DOI: http://doi.ieeecomputersociety.
org/10.1109/IPDPS.2000.845979.

[123] Richard Xia, Tayfun Elmas, Shoaib Ashraf Kamil, Armando Fox, and Koushik Sen. Multi-
level Debugging for Multi-stage, Parallelizing Compilers. Tech. rep. UCB/EECS-2012-227.
EECS Department, University of California, Berkeley, 2012. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2012/EECS-2012-227.html.

[124] Katherine A. Yelick et al. “Titanium: A High-performance Java Dialect”. In: Concurrency
- Practice and Experience 10.11-13 (1998), pp. 825–836. URL: http://dblp.uni-
trier.de/rec/bibtex/journals/concurrency/YelickSPMLKHGGCA98.

163

[125] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
“Spark: Cluster Computing with Working Sets”. In: Proceedings of the 2nd USENIX confer-
ence on Hot Topics in Cloud Computing. HotCloud’10. Boston, MA: USENIX Association,
2010, pp. 10–10. URL: http://dl.acm.org/citation.cfm?id=1863103.1863113.

164

	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements
	Introduction
	Thesis Contributions
	Thesis Outline

	Motivation and Background
	Trends in Computing Hardware
	Trends in Software
	The Productivity-Performance Gap
	Auto-tuning and Auto-tuning Compilers
	Summary

	Related Work
	Optimized Low-level Libraries and Auto-tuning
	Accelerating Python
	Domain-Specific Embedded Languages
	Just-in-Time Compilation & Specialization
	Accelerating Structured Grid Computations
	Accelerating Graph Algorithms
	Summary

	SEJITS: A Methodology for High Performance Domain-Specific Embedded Languages
	Overview of SEJITS
	DSELs and APIs in Productivity Languages
	Code Generation
	Auto-tuning
	Best Practices for DSELs in SEJITS
	Language Requirements to Enable SEJITS
	Summary

	Asp is SEJITS for Python
	Overview of Asp
	Walkthrough: Building a DSEL Compiler Using Asp
	Defining the Semantic Model
	Transforming Python to Semantic Model Instances
	Generating Backend Code

	Expressing Semantic Models
	Code Generation
	Dealing with Types

	Just-In-Time Compilation of Asp Modules
	Debugging Support
	Auto-tuning Support
	Summary

	Experimental Setup
	Hardware Platforms
	Software Environment
	Compilers & Runtimes
	Parallel Programming Models

	Performance Measurement Methodology
	Timing Methodology
	Roofline Model

	Summary

	Overview of Case Studies
	Structured Grid Computations
	Characteristics of Structured Grid Computations
	Applications
	Dimensionality
	Connectivity
	Topology

	Computational Characteristics
	Data Structures
	Interior Computation & Boundary Conditions
	Memory Traffic

	Optimizations
	Algorithmic Optimizations
	Cache and TLB Blocking
	Vectorization
	Locality Across Grid Sweeps
	Communication Avoiding Algorithms
	Parallelization
	Summary of Optimizations

	Modeling Performance of Structured Grid Algorithms
	Serial Performance Models
	Roofline Model for Structured Grid

	Summary

	An Auto-tuner for Parallel Multicore Structured Grid Computations
	Structured Grids Kernels & Architectures
	Benchmark Kernels
	Experimental Platforms

	Auto-tuning Framework
	Front-End Parsing
	Structured Grid Kernel Breadth

	Optimization & Code Generation
	Serial Optimizations
	Multicore-specific Optimizations and Code Generation
	CUDA-specific Optimizations and Code Generation

	Auto-Tuning Strategy Engine
	Performance Evaluation
	Auto-Parallelization Performance
	Performance Expectations
	Performance Portability
	Programmer Productivity Benefits
	Architectural Comparison

	Limitations
	Summary

	Sepya: An Embedded Domain-Specific Auto-tuning Compiler for Structured Grids
	Analysis-Avoiding DSEL for Structured Grids
	Building Blocks of Structured Grid Calculations
	Language and Semantics
	Avoiding Analysis
	Language in Python Constructs

	Structure of the Sepya Compiler
	Implemented Code Generation Algorithms & Optimizations
	Auto-tuning
	Data Structure

	Evaluation
	Test kernels & Other DSL systems
	Breakdown of Execution Time
	Single Iteration Performance
	Multiple Iteration Performance
	Grid Size Scaling
	Expressibility
	Programmer Productivity
	Improving Auto-tuning Search

	Future Work
	Language Extensions
	Opportunities for Further Optimization

	Summary

	Graph Algorithms
	Applications of Graph Algorithms
	Common Programming Models
	Visitor Programming Pattern
	Bulk-Synchronous Programming Model for Graph Algorithms
	Matrix Representation & the Linear Algebra Programming Model

	KDT: The Knowledge Discovery Toolbox
	Performance Modeling Issues for Graph Algorithms Using Linear Algebra
	Summary

	Domain Specific Embedded Languages For High Performance Graph Algorithms in the Knowledge Discovery Toolbox
	A Domain-Specific Embedded Language for Filtering Semantic Graphs
	Filters in the Knowledge Discovery Toolbox
	DSEL for Filters
	Experimental Results

	A Domain-Specific Embedded Language for Defining Semirings in Python
	Semirings in KDT
	Domain-Specific Embedded Language for Semiring Operations
	Implementation of the DSEL
	Experimental Results

	Future Work
	Summary

	Other Case Studies: Implemented Domain-Specific Embedded Languages and Auto-tuned Libraries Using the Asp Framework
	Auto-tuned Matrix Powers for Python
	Implementation Strategy
	Performance Results

	Gaussian Mixture Modeling for CPUs and GPUs
	Implementation Strategy
	Performance Results

	A DSEL for the Bag of Little Bootstraps Algorithm
	Implementation
	Performance Results

	Summary

	Insights, Future Directions, and Conclusions
	Insights from Case Studies
	Future Directions: Building an Ecosystem of DSELs
	Future Directions: Composing DSELs
	Future Directions for Asp
	Data Structure Definitions
	Improvements in Code Generation
	Compilation As A Service
	Speeding Up Auto-tuning

	Conclusion

	Bibliography

